Skip to main content

Advertisement

Log in

Assessing the mycotoxigenic threat of necrotrophic pathogens of wheat

  • Review
  • Published:
Mycotoxin Research Aims and scope Submit manuscript

Abstract

Pathogenic fungi are the causal agents of many significant plant diseases around the world. These diseases often result in significant yield reductions, leading to lower food production rates and economic losses. Several of these pathogenic fungi also produce mycotoxins during infection, which are harmful to human and animal health. Whilst some of these toxins and the fungi that produce them have been studied intensively, the mycotoxigenic potential of many of these pathogens remains largely unknown. Included within these fungi are the necrotrophic pathogens of wheat, Stagonospora nodorum, Pyrenophora tritici-repentis and Alternaria alternata. Recent studies have demonstrated that each of these pathogens is capable of synthesizing an array of mycotoxic compounds during disease development, questioning their status as non-mycotoxin producers. This review summarises recent mycotoxin findings in these necrotrophic wheat pathogens by briefly discussing the mycotoxins identified, their toxicity and their synthesis. Future and emerging threats are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agrios GN (2005) Plant Pathology. Elsevier, San Diego

    Google Scholar 

  • Alexander NJ, Proctor RH, McCormick SP (2009) Genes, gene clusters, and biosynthesis of trichothecenes and fumonisins in Fusarium. Toxin Rev 28:198–215

    Article  CAS  Google Scholar 

  • Anke H, Kolthoum I, Laatsch H (1980) Metabolic products of microorganisms. 192. The anthraquinones of the Aspergillus glaucus group. II. Biological activity. Arch Microbiol 126:231–236

    Article  PubMed  CAS  Google Scholar 

  • Bailey KL, Gossen BD, Gugel RK, Morrall RAA (2003) Diseases of field crops in Canada. The Canadian Phytopathological Society, Harrow, Ontario

    Google Scholar 

  • BellÌ N, MarÌn S, Sanchis V, Ramos AJ (2004) Influence of water activity and temperature on growth of isolates of Aspergillus section Nigri obtained from grapes. Int J Food Microbiol 96:19–27

    Article  PubMed  Google Scholar 

  • Betina V (1989) Mycotoxins. Chemical, biological and environmental aspects. Elsevier, Amsterdam

    Google Scholar 

  • Bottalico A, Logrieco A (1998) Toxigenic Alternaria species of economic importance. In: Sinha KK, Bhatnagar D (eds) Mycotoxins in agriculture and food safety. Marcel Dekker, New York, pp 65–108

    Google Scholar 

  • Bouras N, Strelkov SE (2008) The anthraquinone catenarin is phytotoxic and produced in leaves and kernels of wheat infected by Pyrenophora tritici-repentis. Physiol Mol Plant Pathol 72:87–95

    Article  CAS  Google Scholar 

  • Bouras N, Kim YM, Strelkov SE (2009) Influence of water activity and temperature on growth and mycotoxin production by isolates of Pyrenophora tritici-repentis from wheat. Int J Food Microbiol 131:251–255

    Article  PubMed  CAS  Google Scholar 

  • Brzonkalik K, Herrling T, Syldatk C, Neumann A (2011) The influence of different nitrogen and carbon sources on mycotoxin production in Alternaria alternata. Int J Food Microbiol 147:120–126

    Article  PubMed  CAS  Google Scholar 

  • Christensen CM (1951) Fungi on and in wheat seed. Cereal Chem 28:408–415

    Google Scholar 

  • Ciuffetti LM, Manning VA, Pandelova I, Betts MF, Martinez JP (2010) Host-selective toxins, Ptr ToxA and Ptr ToxB, as necrotrophic effectors in the Pyrenophora tritici-repentis-wheat interaction. New Phytol 187:911–919

    Article  PubMed  CAS  Google Scholar 

  • Darke CS, Knowelden J, Lacey J, Milford Ward A (1976) Respiratory disease of workers harvesting grain. Thorax 31:294–302

    Article  PubMed  CAS  Google Scholar 

  • Engström K, Brishammar S, Svensson C, Bengtsson M, Andersson R (1993) Anthraquinones from some Drechslera species and Bipolaris sorokiniana. Mycol Res 97:381–384

    Article  Google Scholar 

  • Franck B (1984) Mycotoxins from mold fungi—weapons of uninivited fellow-boarders of man and animal: structures, biological activity, biosynthesis, and precautions. Angewandte Chemie International 23:493–505

    Article  Google Scholar 

  • Fredenhagen A, Mett H, Meyer T, Buchdunger E, Regenass U, Roggo BE et al (1995) Protein tyrosine kinase and protein kinase C inhibition by fungal anthraquinones related to emodin. J Antibiot 48:1355–1358

    PubMed  CAS  Google Scholar 

  • Friesen TL, Stukenbrock EH, Liu Z, Meinhardt S, Ling H, Faris JD et al (2006) Emergence of a new disease as a result of interspecific virulence gene transfer. Nat Genet 38:953–956

    Article  PubMed  CAS  Google Scholar 

  • Friesen TL, Faris JD, Solomon PS, Oliver RP (2008) Host-specific toxins: Effectors of necrotrophic pathogenicity. Cell Microbiol 10:1421–1428

    Article  PubMed  CAS  Google Scholar 

  • Galvano F, Ritieni A, Piva G, Pietra A (2005) Mycotoxins in the human food chain. In: Diaz DE (ed) The mycotoxin blue book. Nottingham University Press, Nottingham, pp 187–224

    Google Scholar 

  • Gardiner DM, Kazan K, Manners JM (2009) Novel genes of Fusarium graminearum that negatively regulate deoxynivalenol production and virulence. Mol Plant Microbe Interact 22:1588–1600

    Article  PubMed  CAS  Google Scholar 

  • Goswami RS, Kistler HC (2004) Heading for disaster: Fusarium graminearum on cereal crops. Mol Plant Pathol 5:515–525

    Article  PubMed  CAS  Google Scholar 

  • Hill RA, Lacey J (1983) The microflora of ripening barley grain and the effects of pre harvest fungicide application. Ann Appl Biol 102:455–465

    Article  Google Scholar 

  • Hyde MB, Galleymore HB (1951) The subepidermal fungi of cereal grains II. The nature, identity and origin of the mycelium in wheat. Ann Appl Biol 38:348–356

    Article  Google Scholar 

  • Kopinski JS, Blaney BJ (2010) Nutritive value and non-toxicity of Botryosphaeria zeae-infected wheat for weaner pigs. J Anim Physiol Anim Nutr 94:44–54

    Article  CAS  Google Scholar 

  • Li F-Q, Yoshizawa T (2000) Alternaria mycotoxins in weathered wheat from China. J Agric Food Chem 48:2920–2924

    Article  PubMed  CAS  Google Scholar 

  • Liberman DF, Schaeffer FL, Fink RC (1980) Mutagenicity of islandicin and chrysophanol in the Salmonella/microsome system. Appl Environ Microbiol 40:476–479

    PubMed  CAS  Google Scholar 

  • Magan N, Lacey J (1984) Effect of temperature and pH on water relations of field and storage fungi. Trans Br Mycol Soc 82:71–81

    Article  Google Scholar 

  • Magan N, Cayley GR, Lacey J (1984) Effect of water activity and temperature on mycotoxin production by Alternaria alternata in culture and on wheat grain. Appl Environ Microbiol 47:1113–1117

    PubMed  CAS  Google Scholar 

  • Mapari SAS, Nielsen KF, Larsen TO, Frisvad JC, Meyer AS, Thrane U (2005) Exploring fungal biodiversity for the production of water-soluble pigments as potential natural food colorants. Curr Opin Biotechnol 16:231–238

    Article  PubMed  CAS  Google Scholar 

  • Marko D (2007) Mechanisms of the genotoxic effect of Alternaria toxins. In: 29th Mycotoxin Workshop, Stuttgart-Fellbach, Germany, pp. 48

  • Meronuck RA, Steele JA, Mirocha CJ, Christensen CM (1972) Tenuazonic acid, a toxic produced by Alternaria alternata. Appl Microbiol 23:613–617

    PubMed  CAS  Google Scholar 

  • Murray GM, Brennan JP (2009) Estimating disease losses to the Australian wheat industry. Australas Plant Pathol 38:558–570

    Article  Google Scholar 

  • Oliver RP, Solomon PS (2010) New developments in pathogenicity and virulence of necrotrophs. Curr Opin Plant Biol 13:415–419

    Article  PubMed  CAS  Google Scholar 

  • Orton ES, Deller S, Brown JKM (2011) Mycosphaerella graminicola: from genomics to disease control. Mol Plant Pathol 12:413–424

    Article  PubMed  Google Scholar 

  • Ostry V (2008) Alternaria mycotoxins: an overview of chemical characterisation, producers, toxicity, analysis and occurrence in foodstuffs. World Mycotox J 1:175–188

    Article  CAS  Google Scholar 

  • Pestka JJ (2010) Toxicological mechanisms and potential health effects of deoxynivalenol and nivalenol. World Mycotox J 3:323–347

    Article  CAS  Google Scholar 

  • Pose G, Patriarca A, Kyanko V, Pardo A, Fernández Pinto V (2010) Water activity and temperature effects on mycotoxin production by Alternaria alternata on a synthetic tomato medium. Int J Food Microbiol 142:348–353

    Article  PubMed  CAS  Google Scholar 

  • Raistrick H, Stickings CE, Thomas R (1953) Studies in the biochemistry of microorganisms. 90. Alternariol and alternariol monomethyl ether, metabolic products of Alternaria tenuis. Biochem J 55:421–433

    PubMed  CAS  Google Scholar 

  • Solomon PS, Lowe RGT, Tan KC, Waters ODC, Oliver RP (2006) Stagonospora nodorum: cause of stagonospora nodorum blotch of wheat. Mol Plant Pathol 7:147–156

    Article  PubMed  Google Scholar 

  • Stepien L, Chelkowski J (2010) Fusarium head blight of wheat: pathogenic species and their mycotoxins. World Mycotox J 3:107–119

    Article  CAS  Google Scholar 

  • Steyn PS, Rabie CJ (1976) Characterization of magnesium and calcium tenuazonate from Phoma sorghina. Phytochemistry 15:1977–1979

    Article  CAS  Google Scholar 

  • Tan KC, Ipcho SVS, Trengove RD, Oliver RP, Solomon PS (2009a) Assessing the impact of transcriptomics, proteomics and metabolomics on fungal phytopathology. Mol Plant Pathol 10:703–715

    Article  PubMed  CAS  Google Scholar 

  • Tan KC, Trengove RD, Maker GL, Oliver RP, Solomon PS (2009b) Metabolite profiling identifies the mycotoxin alternariol in the pathogen Stagonospora nodorum. Metabolomics 5:330–335

    Article  CAS  Google Scholar 

  • Turner PC (2010) Deoxynivalenol and nivalenol occurrence and exposure assessment. World Mycotox J 3:315–321

    Article  CAS  Google Scholar 

  • Wakuliński W, Kachlicki P, Sobiczewski P, Schollenberger M, Zamorski C, Łotocka B et al (2003) Catenarin production by isolates of Pyrenophora tritici-repentis (Died.) Drechsler and its antimicrobial activity. J Phytopathol 151:74–79

    Article  Google Scholar 

  • Widermuth, GB, Williamson, P, Shivas, R and McNamara, RB (2001) Permature head blight and white grain—a new disease of wheat. In: Oliver V, Trevorrow P, Davis RW (eds) Proceedings of the 13th Biennial Australasian Plant Pathology Society Conference. Australasian Plant Pathology Society, Cairns, pp. 241.

  • Yekeler H, Bitmis K, Ozcelik N, Doymaz MZ, Calta M (2001) Analysis of toxic effects of Alternaria toxins on esophagus of mice by light and electron microscopy. Toxicol Pathol 29:492–497

    Article  PubMed  CAS  Google Scholar 

  • Yu JH, Keller N (2005) Regulation of secondary metabolism in filamentous fungi. Annu Rev Phytopathol 43:437–458

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter S. Solomon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solomon, P.S. Assessing the mycotoxigenic threat of necrotrophic pathogens of wheat. Mycotoxin Res 27, 231–237 (2011). https://doi.org/10.1007/s12550-011-0108-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12550-011-0108-5

Keywords

Navigation