Skip to main content
Log in

Fossil samaras of Acer L. (Sapindaceae) from the Upper Pliocene of western Yunnan, southwestern China

  • Original Paper
  • Published:
Palaeobiodiversity and Palaeoenvironments Aims and scope Submit manuscript

Abstract

The genus Acer L. (Sapindaceae Juss.) nowadays thrives in the temperate-subtropical areas of the Northern Hemisphere, especially in Yunnan and its adjacent areas in southwestern China. However, the fossil records of Acer from China, especially fruit fossils, are rather limited compared to its modern prosperity and high species diversity there. In this study, we described three taxa of Acer, viz. A. cf. caesium Wall. ex Brandi, A. cf. laurinum Hassk. ex Miq. and Acer sp., based on samara fossils from the Upper Pliocene of Tengchong, Yunnan, southwestern China. The samaras of Acer cf. caesium are characterised by large size, suborbicular to elliptical nutlet shape, and acute divergent angle; those of Acer cf. laurinum are characterised by large size, acute divergent angle, long elliptical nutlet shape and 5-7 veined nutlet surface; and those of Acer sp. are possibly underdeveloped and distinguished from all extant and fossil species of Acer by small size, distinct sulcus, and specific sub-triangular to semicircular nutlet shape. The occurrence of these fossils from Tengchong indicates that Acer was prosperous with high species diversity in western Yunnan during the Late Pliocene. The migration and differentiation of the genus Acer in southwestern China might have been accelerated by the rapid uplift of the Hengduan Mountains (HDM) and the post-Pliocene global cooling trend.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Data availability

The studied fossil specimens are deposited in the fossil repository of the Institute of Palaeontology and Stratigraphy, Lanzhou University in Lanzhou City, Gansu Province, China.

The photographs of extant Acer specimens that support the morphological comparisons in this study are openly available in the Chinese Virtual Herbarium (CVH) at https://www.cvh.ac.cn, New York Botanical Garden Steere Herbarium (NYBG) at https://www.nybg.org, JSTOR Global Plants at https://plants.jstor.org, Royal Botanic Garden Edinburgh Herbarium (RBGE) at https://www.rbge.org.uk, French National Museum of Natural History (MNHM) at https://science.mnhn.fr, and Royal Botanic Gardens Kew Herbarium at https://www.kew.org.

References

  • Acevedo-Rodríguez, P., van Welzen, P. C., Adema, F., & van der Ham, R. W. J. M. (2011). Sapindaceae. In K. Kubitzki (Ed.), Flowering Plants Eudicots: Sapindales, Cucurbitales, Myrtaceae. (pp. 357–407). Cham: Springer.

  • Akkemik, Ü., Bayam, N. N. A., & Akarsu, F. (2018). An approach to compare the environmental conditions of Acer in the Miocene and in the modern flora of Turkey, based on wood anatomy. Acta Palaeobotanica, 58(2), 209-217. https://doi.org/10.2478/acpa-2018-0010.

    Article  Google Scholar 

  • An, P.-C., Tang, D.-L., Chen, H., Yang, Q., Ding, S.-T., & Wu, J.-Y. (2019). Pliocene white pine (Pinus subgenus Strobus) needles from western Yunnan, southwestern China. Historical Biology, 31(10), 1412-1422. https://doi.org/10.1080/08912963.2018.1461216.

    Article  Google Scholar 

  • Anderson, W. R., & Gates, B. (1981). Barnebya, a new genus of Malpighiaceae from Brazil. Brittonia, 33(3), 275. https://doi.org/10.2307/2806416.

    Article  Google Scholar 

  • Areces-Berazain, F., Hinsinger, D. D., & Strijk, J. S. (2021). Genome-wide supermatrix analyses of maples (Acer, Sapindaceae) reveal recurring inter-continental migration, mass extinction, and rapid lineage divergence. Genomics, 113(2), 681-692. https://doi.org/10.1016/j.ygeno.2021.01.014.

    Article  Google Scholar 

  • Barrón, E., & Postigo-Mijarra, J. M. (2011). Early Miocene fluvial-lacustrine and swamp vegetation of La Rinconada mine (Ribesalbes-Alcora basin, Eastern Spain). Review of Palaeobotany and Palynology, 165(1-2), 11-26. https://doi.org/10.1016/j.revpalbo.2011.02.001.

  • Buechler, W. K., Dunn, M. T., & Rember, W. C. (2007). Late Miocene Pickett Creek flora of Owyhee County, Idaho. Contributions from the Museum of Paleontology, the University of Michigan, 31(12), 305-362.

    Google Scholar 

  • Chan, P., Ting, Y., Rahman, N., Chong, R., Lam, W., & Chong, K. (2020). Notes on Acer laurinum (Sapindaceae) in freshwater swamp forest in Singapore. Gardens' Bulletin Singapore, 72(2), 165-172. https://doi.org/10.26492/gbs72(2).2020-05.

  • Chen, H., Tang, D.-L., Zhang, Y., An, P.-C., Yan, X.-Y., Ding, S.-T., & Wu, J.-Y. (2021). Fossil Podocarpus (Podocarpaceae) from the lower Pliocene of Tengchong, Yunnan Province, China and its biogeographic significance. Historical Biology, 33(9), 1352-1361 https://doi.org/10.1080/08912963.2019.1697254.

    Article  Google Scholar 

  • Chen, Y.-F., Wong, W. O., Hu, Q., Liufu, Y.-Q., & Xie, Z.-M. (2017). A new fossil-species of Acer (Sapindaceae) from the Ningming Basin in Guangxi, South China. Phytotaxa, 298(2), 158–164. https://doi.org/10.11646/phytotaxa.298.2.5.

  • Clark, M. K., House, M. A., Royden, L. H., Whipple, K. X., Burchfiel, B. C., Zhang, X., & Tang, W. (2005). Late Cenozoic uplift of southeastern Tibet. Geology, 33(6), 525-552. https://doi.org/10.1130/G21265.1.

    Article  Google Scholar 

  • Dai, J., Sun, B.-N., Xie, S.-P., Lin, Z.-C., Wu, J.-Y., & Dao, K.-Q. (2013). A new species of Carpinus (Betulaceae) from the Pliocene of Yunnan Province, China. Plant Systematics and Evolution, 299, 643-658. https://doi.org/10.1007/s00606-012-0750-1.

    Article  Google Scholar 

  • Delendick, T. J. (1981). A systematic review of the Aceraceae. PhD Thesis. City University of New York.

  • Fang, J.-Y., Wang, Z.-H., & Tang, Z.-Y. (2011). Atlas of woody plants in China: distribution and climate (Vol. 1). Berlin, Heidelberg: Springer.

  • Ferguson, D. K., & Knobloch, E. (1998). A fresh look at the rich assemblage from the Pliocene sink-hole of Willershausen, Germany. Review of Palaeobotany and Palynology, 101, 271-286.

    Article  Google Scholar 

  • Gabrielyan, I., & Kovar-Eder, J. (2011). The genus Acer from the lower/middle Pleistocene Sisian Formation, Syunik region, south Armenia. Review of Palaeobotany and Palynology, 165(3-4), 111-134. https://doi.org/10.1016/j.revpalbo.2010.11.006.

  • Gao, J., Liao, P.-C., Huang, B.-H., Yu, T., Zhang, Y.-Y., & Li, J.-Q. (2020). Historical biogeography of Acer L. (Sapindaceae): genetic evidence for Out-of-Asia hypothesis with multiple dispersals to North America and Europe. Scientific reports, 10(1), 1-10. https://doi.org/10.1038/s41598-020-78145-0.

  • Gates, B. (1982). Banisteriopsis, Diplopterys (Malpighiaceae). In Flora neotropica Vol. 30 (pp. 1-237). New York Botanical Garden Press.

  • GBIMARC (Geological Bureau of Inner Mongolia Autonomous Region of China), & IGSNC (Institute of Geological Sciences of Northeast China) (1976). Atlas of paleontology in North China: Fascicule of Inner Mongolia (2). Beijing: Geology Press. [in Chinese]

  • Ge, H.-R., & Li, D.-Y. (1999). Cenozoic coal-bearing basins and coal-forming regularity in West Yunnan. Yunnan Science and Technology Press. [in Chinese with English abstract]

  • Gelderen, C. J. van, & Gelderen, D. M. van (1999). Maples for gardens. Potland: Timber Press.

    Google Scholar 

  • Grimm, G. W., Renner, S. S., Stamatakis, A., & Hemleben, V. (2006). A nuclear ribosomal DNA phylogeny of Acer inferred with maximum likelihood, splits graphs, and motif analysis of 606 sequences. Evolutionary Bioinformatics, 2, 7-22. https://doi.org/10.1177/117693430600200014.

    Article  Google Scholar 

  • Hably, L., & Kvaček, Z. (1998). Pliocene mesophytic forests surrounding crater lakes in western Hungary. Review of Palaeobotany and Palynology, 101, 257-269. https://doi.org/10.1016/s0034-6667(97)00077-8

    Article  Google Scholar 

  • Harris, A. J., Chen, Y.-S., Olsen, R. T., Lutz, S., & Wen, J. (2017). On merging Acer sections Rubra and Hyptiocarpa: Molecular and morphological evidence. PhytoKeys, 86, 9-42. https://doi.org/10.3897/phytokeys.86.13532.

    Article  Google Scholar 

  • He, Y.-L., Li, N., Wang, Z.-X., Wang, H.-F., Yang, G.-L., Xiao, L., Wu, J.-Y., & Sun, B.-N. (2014). Quercus yangyiensis sp. nov. from the Late Pliocene of Baoshan, Yunnan and its paleoclimatic significance. Acta Geologica Sinica (English Edition), 88(3), 738–747. https://doi.org/10.1111/1755-6724.12234.

  • He, W.-L., & Wang, X.-J. (2021). A Miocene flora from the Toupi Formation in Jiangxi Province southeastern China. Palaeoworld, 30(4), 757–769. https://doi.org/10.1016/j.palwor.2020.12.006.

  • Hu, H.-H., & Cheng, W.-C. (1948). New and noteworthy species of Chinese Acer. Bulletin of the Fan Memorial Institute of Biology, 1, 199-212. [in Chinese with English abstract]

    Google Scholar 

  • Huang, Y.-J., Zhu, H., Chen, W.-Y., & Zhou, Z.-K. (2013). Intraspecific variation in samara morphology of Acer and its implication in fossil identification. Plant Diversity and Resources, 35(3), 295-302. https://doi.org/10.1016/j.ymssp.2015.04.026. [in Chinese with English abstract]

  • Huang, Y.-J., Jia, L.-B., Su, T., Zhu, H., Momohara, A., Gu, Z.-J., & Zhou, Z.-K. (2020). A warm-temperate forest of mixed coniferous type from the upper Pliocene Sanying Formation (southeastern edge of Tibetan Plateau) and its implications for palaeoecology and palaeoaltimetry. Palaeogeography, Palaeoclimatology, Palaeoecology, 538, 109486. https://doi.org/10.1016/j.palaeo.2019.109486.

  • Irwanto, R. R., & Irsyam, A. S. D. (2021). Acer laurinum Hassk. Sapindaceae. In F. M. Franco (Ed.), Ethnobotany of the Mountain Regions of Southeast Asia (pp. 43-47). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-38389-3_56.

  • Jin, J.-H. (2009). Two Eocene fossil fruits from the changchang basin of Hainan Island, China. Review of Palaeobotany and Palynology, 153(1-2), 150-152. https://doi.org/10.1016/j.revpalbo.2008.07.010.

  • Jong, P. C. de (1976). Flowering and sex expression in Acer L.: a biosystematic study. Meded. (Vol. 76). Wageningen University and Research.

  • Jong, P. C. de (1994). Taxonomy and reproductive biology of maples. In D. M. van Geldern, P. C. de Jong, & H. J. Oterdoom (Eds.), Maples of the world (pp. 69–104). Portland: Timber Press.

    Google Scholar 

  • Kalis, A. J., Knaap, W. O. van der, Schweizer, A., & Urz, R. (2006). A three thousand year succession of plant communities on a valley bottom in the Vosges Mountains, NE France, reconstructed from fossil pollen, plant macrofossils, and modern phytosociological communities. Vegetation History and Archaeobotany, 15(4), 377-390. https://doi.org/10.1007/s00334-006-0065-7.

    Article  Google Scholar 

  • Kim, J.-H. (2008). A new species of Acer samaras from the Miocene Yeonil Group in the Pohang Basin, Korea. Geosciences Journal, 12(4), 331-336. https://doi.org/10.1007/s12303-008-0033-6.

    Article  Google Scholar 

  • Kovar-Eder, J., Kvaček, Z., & Ströbitzer-Hermann, M. (2004). The Miocene flora of Parschlug (Styria, Austria)–revision and synthesis. Annalen des Naturhistorischen Museums in Wien. Serie A für Mineralogie und Petrographie, Geologie und Paläontologie, Anthropologie und Prähistorie, 105A, 45-159.

    Google Scholar 

  • Kvaček, Z. (1998). Bı́lina: a window on Early Miocene marshland environments. Review of Palaeobotany and Palynology, 101, 123. https://doi.org/10.1016/s0034-6667(97)00072-9.

  • Kvaček, Z., & Hurník, S. (2000). Revision of Early Miocene plants preserved in baked rocks in the North Bohemian Tertiary. Acta Musei Nationalis Paragae, Series B, Historia Naturalis, Sborník Národního Muzea v Praze. Řada B, Přírodní Vědy, 56(1-2), 1-48.

  • Lavrenko, O. D., & Fot’janova, L. I. (1994). Some Early Paleogene species from western Kamchatka. In M. C. Boulter & H. C. Fisher (Eds.), Cenozoic Plants and Climates of the Arctic (Vol. 27, pp. 315–325). Cham: Springer.

  • Li, D.-M., Li, Q., & Chen, W.-J. (2000). Volcanic activities in the Tengchong volcano area since Pliocene. Acta Petrologica Sinica, 16(3), 362-370. [in Chinese with English abstract]

    Google Scholar 

  • Liang, J.-Q., Xiao, L., Li, X.-C., Wang, X., & Wang, Q. (2019). The first discovery of the fossils of Acer from the Miocene epoch in Inner Mongolia. Geological Review, 65, 69-70. [in Chinese]

    Google Scholar 

  • Mai, D. H. (1984). Die Endokarpien bei der Gattung Acer L.(Aceraceae)-Eine biosystematische Studie. Gleditschia, 11, 17-46. [in German]

  • Mai, D. H., & Walther, H. (1988). Die pliozänen Floren von Thüringen, Deutsche Demokratische Republik. Quatärpaläontologie, 7, 5–297. [in German]

    Google Scholar 

  • Manchester, S. R. (2000). Late Eocene fossil plants of the John Day Formation, wheeler county, Oregon. Oregon Geology, 62(3), 51-63.

    Google Scholar 

  • Mirle, C., & Burnham, R. J. (1999). Identification of asymmetrically winged samaras from the western Hemisphere. Brittonia, 51(1), 1-14. https://doi.org/10.2307/2666549.

  • Mu, Z.-G., Tong, W., & Curtis, G. H. (1987). Times of volcanic activity and origin of magma in Tengchong geothermal area, West Yunnan Province. Acta Geophysica Sinica, 30, 261–270. [in Chinese with English abstract]

  • Nasu, T., & Setu, K. (1976). Fossil macrospores and massulae of Salvinia natans from the Pliocene and the Quarternary sediments in the Kinki and Tokai Districts, Japan. Bulletin of the Osaka Museum of Natural History, 30(7), 37-48.

  • Ogata, K. (1967). A systematic study of the genus Acer. Bulletin of the Tokyo University Forests, 63, 89-206.

    Google Scholar 

  • Pax, F. (1902). Aceraceae. In H. G. A. Engler (Ed.), Das Pflanzenreich IV. Leipig. W. Engelmann.

  • Pfosser, M. F., Guzy-Wrobelska, J., Sun, B.-Y., Stuessy, T. F., Sugawara, T., & Fujii, N. (2002). The origin of species of Acer (Sapindaceae) endemic to Ullung Island, Korea. Systematic Botany, 27(2), 351–367. https://doi.org/10.1043/0363-6445-27.2.351.

  • Pojarkova, A. Z. (1933). Botanico-geographical survey of the maples in USSR, in cconnection with the history of the whole genus Acer L. Acta Institute of Botany Academy of Sciences USSR, ser. 1, fasc, 1, 224-374.

  • Prakash, U., & Barghoorn, E. S. (1961). Miocene fossil woods from the Columbia basalts of Central Washington. Journal of the Arnold Arboretum, 42(2), 165-203.

    Google Scholar 

  • Rehder, A. (1905). The maples of eastern continental Asia. In C. S. Sargent (Ed.), Trees and Shrubs. (pp. 131-181). Houghton: Mifflin and Company.

  • Renner, S. S., Beenken, L., Grimm, G. W., Kocyan, A., & Ricklefs, R. E. (2007). The evolution of dioecy, heterodichogamy, and labile sex expression in Acer. Evolution: International Journal of Organic Evolution, 61(11), 2701-2719. https://doi.org/10.1111/j.1558-5646.2007.00221.x.

  • Renner, S. S., Grimm, G. W., Schneeweiss, G. M., Stuessy, T. F., & Ricklefs, R. E. (2008). Rooting and dating maples (Acer) with an uncorrelated-rates molecular clock: implications for North American/Asian disjunctions. Systematic biology, 57(5), 795-808. https://doi.org/10.1080/10635150802422282.

    Article  Google Scholar 

  • Sabol, M., Konečný, V., Vass, D., Kováčová, M., Ďurišová, A., & Túnyi, I. (2006). Early Late Pliocene site of Hajnáčka I (Southern Slovakia)–geology, palaeovolcanic evolution, fossil assemblages and palaeoenvironment. Courier Forschungsinstitut Senckenberg, 256, 261-274.

    Google Scholar 

  • Shang, Y.-L. (2003). Tengchong diatomite deposit and its genesis. Yunnan Geology, 22(4), 418-425. [in Chinese with English abstract]

    Google Scholar 

  • Shi, Y.-R., Wu, Z.-H., Fan, T.-Y., Tong, Y.-B., & Yang, Z.-Y. (2012). SHRIMP zircon U-Pb dating and geochemical analysis of the Pliocene volcanic rocks from Longchuanjiang valley, Tengchong area, western Yunnan Province. Geological Bulletin of China, 31(2-3), 241-249. [in Chinese with English abstract]

  • Su, T., Jacques, F. M. B., Spicer, R. A., Liu, Y.-S., Huang, Y.-J., Xing, Y.-W., & Zhou, Z.-K. (2013). Post-Pliocene establishment of the present monsoonal climate in SW China: evidence from the late Pliocene Longmen megaflora. Climate of the Past, 9(4), 1911-1920. https://doi.org/10.5194/cp-9-1911-2013.

    Article  Google Scholar 

  • Sun, B.-N., Wu, J.-Y., Liu, Y.-S., Ding, S.-T., Li, X.-C., Xie, S.-P., Yan, D.-F., & Lin, Z.-C. (2011). Reconstructing Neogene vegetation and climates to infer tectonic uplift in western Yunnan, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 304(3–4), 328–336. https://doi.org/10.1016/j.palaeo.2010.09.023.

  • Tan, K., Dong, S.-P., Lu, T., Zhang, Y.-J., Xu, S.-T., & Ren, M.-X. (2018). Diversity and evolution of samara in angiosperm. Chinese Journal of Plant Ecology, 42(8), 806–817. [in Chinese with English abstract]

    Article  Google Scholar 

  • Tanai, T. (1983). Revisions of Tertiary Acer from East Asia. Journal of the Faculty of Science. Hokkaido University, Series 4: Geology and Mineralogy, 20(4), 291-390.

  • Tang, D.-L., Wang, Z.-E., Ding, H., Huang, Y.-T., Ding, S.-T., & Wu, J.-Y. (2022). New discovery of Mahonia fossils from the Pliocene of Yunnan, China, and its biogeographical significance. Historical Biology, 1-14, published online. https://doi.org/10.1080/08912963.2022.2142912.

  • Tao, J.-R., & Kong, Z.-C. (1973). The fossil florule and sporo-pollen assemblage of the Shang-in Coal Series of Erhyuan, Yunnan. Acta Botanica Sinica, 15(1), 120-126. [in Chinese with English abstract]

    Google Scholar 

  • Velitzelos, D., Bouchal, J. M., & Denk, T. (2014). Review of the Cenozoic floras and vegetation of Greece. Review of Palaeobotany and Palynology, 204, 56-117. https://doi.org/10.1016/j.revpalbo.2014.02.006.

    Article  Google Scholar 

  • Wang, Y.-F., Shao, Y., Li, B.-K., Liu, K.-N., & Xie, S.-P. (2015). Acer leaves and samaras from the late Miocene of Lincang, Yunnan Province. Geological Journal of China Universities, 21(1), 105-116. https://doi.org/10.16108/j.issn1006-7493.2014114. [in Chinese with English abstract]

  • Wang, Z.-E., Tang, D.-L., Ding, H., Huang, Y.-T., Ding, S.-T., & Wu, J.-Y. (2022). Fossil leaves of Populus L. (Salicaceae Mirb.) from the upper Pliocene of Tengchong, Yunnan, southwestern China. Review of Palaeobotany and Palynology, 297, 104579. https://doi.org/10.1016/j.revpalbo.2021.104579.

  • WGCPC (Writing Group of Cenozoic Plants of China) (1978). Cenozoic plants of China. Beijing: Science Press. [in Chinese]

    Google Scholar 

  • Wheeler, E. A., & Manchester, S. R. (2021). A diverse assemblage of Late Eocene woods from Oregon, western USA. Fossil Imprint, 77(2), 299–329. https://doi.org/10.37520/fi.2021.022.

  • Wolfe, J. A., & Tanai, T. (1987). Systematics, phylogeny, and distribution of Acer (maples) in the Cenozoic of western North America. Journal of the Faculty of Science. Hokkaido University, Series 4: Geology and Mineralogy, 22(1), 1–246.

  • Wu, J.-Y., Ding, S.-T., Li, Q.-J., Zhao, Z.-R., Dong, C., & Sun, B.-N. (2014). A new species of Castanopsis (Fagaceae) from the upper Pliocene of West Yunnan, China and its biogeographical implications. Palaeoworld, 23, 370–382. https://doi.org/10.1016/j.palwor.2014.10.005.

  • Wu, J.-Y., Zhao, Z.-R., Li, Q.-J., Liu, Y.-S., Xie, S.-P., Ding, S.-T., & Sun, B.-N. (2015). A new species of Rhodoleia (Hamamelidaceae) from the Upper Pliocene of West Yunnan, China and comments on phytogeography and insect herbivory. Acta Geologica Sinica (English Edition), 89(5), 1440–1452. https://doi.org/10.1111/1755-6724.12556.

  • Wu, J.-Y., Liu, Y.-S., Ding, S.-T., Li, J., & An, P.-C. (2017). Late Pliocene Smilax (Smilacaceae) leaves from Southwest China: phytogeographical and paleoecological implications. Review of Palaeobotany and Palynology, 241, 26–38. https://doi.org/10.1016/j.revpalbo.2017.02.006.

  • Wu, J.-Y., Chen, H., Ruan, S.-C., Yang, M., Mo, L.-B., Ji, B.-Q., Zhang, J.-L., & Ding, S.-T. (2021). Fossil leaves of Podocarpus subgenus Foliolatus (Podocarpaceae) from the Pliocene of southwestern China and biogeographic history of Podocarpus. Review of Palaeobotany and Palynology, 287, 104380. https://doi.org/10.1016/j.revpalbo.2021.104380

  • Xie, S.-P., Sun, B.-N., Wu, J.-Y., Lin, Z.-C., Yan, D.-F., & Liang, X. (2012). Palaeoclimatic estimates for the late Pliocene based on leaf physiognomy from western Yunnan, China. Turkish Journal of Earth Sciences, 21(2), 251-261. https://doi.org/10.3906/yer-1003-23.

    Article  Google Scholar 

  • Xing, Y.-W., & Ree, R. H. (2017). Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot. Proceedings of the National Academy of Sciences, 114, E3444-E3451. https://doi.org/10.1073/pnas.1616063114.

    Article  Google Scholar 

  • Xu, J.-X., Ferguson, D. K., Li, C.-S., Wang, Y.-F., & Du, N.-Q. (2004). Climatic and ecological implications of Late Pliocene palynoflora from Longling, Yunnan, China. Quaternary International, 117, 91–103. https://doi.org/10.1016/S1040-6182(03)00119-8.

  • Xu, T.-Z. (1996). Samara shape of Aceraceae and its implications in systematics and evolution. Guangxi Zhiwu, 16(2), 109-122. [in Chinese with English abstract]

    Google Scholar 

  • Xu, T.-Z., Chen, Y.-S., de Jong, P. C., Oterdoom, H. J., Chang, C.-S. (2008) Aceraceae. In Z.-Y. Wu, P.H. Raven, & D.-Y. Hong (Eds.), Flora of China (pp. 515-553). Beijing: Science / St Louis: Missouri Botanical Gardens.

  • Zachos, J., Pagani, M., Sloan, L., Thomas, E., & Billups, K. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292, 686-693. https://doi.org/10.1126/science.1059412.

    Article  Google Scholar 

  • Zachos, J. C., Dickens, G. R., & Zeebe, R. E. (2008). An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature, 451, 279-283. https://doi.org/10.1038/nature06588.

    Article  Google Scholar 

  • Zetter, R., Farabee, M. J., Pigg, K. B., Manchester, S. R., DeVore, M. L., & Nowak, M. D. (2011). Palynoflora of the late Paleocene silicified shale at Almont, North Dakota, USA. Palynology, 35(2), 179-211. https://doi.org/10.1080/01916122.2010.501164.

    Article  Google Scholar 

  • Zhu, H., & Manchester, S. R. (2020). Red and silver maples in the Neogene of Western North America: Fossil leaves and samaras of Acer section Rubra. International Journal of Plant Sciences, 181(5), 542–556. https://doi.org/10.1086/707106.

  • Zhuo, W.-R., & Zhu, X.-Y. (1990). Neogene system in Tengchong-Lianghe region. Yunnan Geology, 9(4), 321-331. [in Chinese with English abstract]

    Google Scholar 

Download references

Acknowledgements

We thank the editors and two anonymous reviewers for their valuable suggestions and accurate amendments. This work was supported by the National Natural Science Foundation of China [grant numbers 31870200, 32170222 and 42272002], the Second Tibetan Plateau Scientific Expedition and Research Program [Grant 2019QZKK0704], and the Natural Science Foundation of Gansu Province, China [grant number 22JR5RA438].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Yu Wu.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, ZE., Cao, R., Ding, H. et al. Fossil samaras of Acer L. (Sapindaceae) from the Upper Pliocene of western Yunnan, southwestern China. Palaeobio Palaeoenv 103, 695–710 (2023). https://doi.org/10.1007/s12549-023-00575-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12549-023-00575-1

Keywords

Navigation