Skip to main content

Advertisement

Log in

Evidence of biotic recovery through the Cretaceous/Palaeogene transition from the Mahadeo-Cherrapunji succession in the Meghalaya shelf, India

  • Original Paper
  • Published:
Palaeobiodiversity and Palaeoenvironments Aims and scope Submit manuscript

Abstract

Earlier studies on the Mahadeo-Cherrapunji road (MCR) section have documented the Cretaceous-Palaeogene Boundary (KPB ca. ~ 66 Ma), but rare data exist on the Deccan volcanism induced KPB transition and related faunal crises. The environmental stress on biota has been postulated as the main cause of mass extinction. Thus, the study of organic matter (OM) entrapped in the Maastrichtian-Danian shelf sediments has attained importance, although the existing data is inadequate. In this situation, layer-wise n-alkanes and n -fatty acids analyses were carried out using GC-MS. Obtained data show sudden increase in the short chain n -alkane (SCA ~ 6-fold), n-fatty acid (FA) and hopane (> sterane) concentrations. This suggests enhanced continental runoff and soil bacteria biomass passage into the marine realm. Comparing the MCR to the published KPB bearing shallow-marine facies of the Um-Sohryngkew River (USR) section data, we document high SCA and FA contents together with the abundance of the even carbon numbered SCA (n-C16 and n-C18). This suggests thermal degradation and partial combustion of non-woody biomass. The presence of C17 n-alkane and hopane is indicative of their derivation from the algae, fungi and bacteria. A sudden SCA concentration increase coincides with the reported major foraminifers’ extinction between the CF1 and P0 biozones of the MCR section. Further, a similar anomaly exists in the lower part of the CF3 biozone of the USR section and precedes extinction of the main foraminifers’ assemblages. The excursions in SCA content along with hopane and FA are matching well with the major incidences of the Deccan volcanic episodes and convergence of the Indian-plate with the Eurasian plate occurred at 66 Ma (Beck et al. 1995) and with the Burmese-plate during Maastrichtian (Wakita and Metcalfe 2005). These events were responsible for the sea-water disturbances, eustatic and depositional changes, including the retreat of the Tethys. Thus, a combination of extra-basinal and tectono-thermal events together with the greenhouse effects led to unexpected temperature rise and recurrent local sea-level changes that may have resulted in stress and faunal crisis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated and/or analysed during the current study are available from the corresponding author on reasonable request. The research material, including samples are currently stored at the Petrology laboratory, Centre for Earth Ocean and Atmospheric Sciences, University of Hyderabad.

References

  • Abramovich, S., Keller, G., Adatte, T., Stinnesbeck, W., Hottinger, L., Stueben, D., Berner, Z., Ramanivosoa, B., & Randriamanantenasoa, A. (2002). Age and paleoenvironment of the Maastrichtian to Paleocene of the Mahajanga Basin, Madagascar: A multidisciplinary approach. Marine Micropaleontology, 47, 17–70.

    Article  Google Scholar 

  • An, K., Chen, H., Lin, X., Wang, F., Yang, S., Wen, Z., Wang, Z., Zhang, G., & Tong, X. (2017). Major transgression during Late Cretaceous constrained by basin sediments in northern Africa: Implication for global rise in sea level. Frontiers of Earth Science, 11, 740–750. https://doi.org/10.1007/s11707-017-0661-0.

  • Andersson, R.A., Kuhry, P., Meyers, P., Zebühr, Y., Crill, P., Mörth, M. (2011). Impacts of paleohydrological changes on n-alkane biomarker compositions of a Holocene peat sequence in the eastern European Russian Arctic. Organic Geochemistry 42(9), 1065–1075, https://doi.org/10.1016/j.orggeochem.2011.06.020.

  • Arinobu, T., Ishiwatari, R., Kaiho, K., & Lamolda, M. A. (1999). Spike of pyrosynthetic polycyclic hydrocarbons associated with an abrupt decrease in δ13C of a terrestrial biomarker at the Cretaceous–Tertiary boundary at Caravaca, Spain. Geology, 27, 723–726.

  • Arinobu, T., Ishiwatari, R., Kaiho, K., Lamolda, M. A., & Seno, H. (2005). Abrupt massive influx of terrestrial biomarkers into the marine environment at the Cretaceous-Tertiary boundary, Caravaca, Spain. Palaeogeography Palaeoclimatology Palaeoecology, 224, 108–116.

  • Azevedo, D. A., Aquino Neto, F. R., Simoneit B. R. T., & Pinto, A. C. (1992). Novel series of tricyclic aromatic terpanes characterized in Tasmanian tasmanite. Organic Geochemistry 18(1), 9–16. https://doi.org/10.1016/0146-6380(92)90138-N.

  • Beck, R. A., Burbank, D. W., Sercombe, W. J., Riley, G. W., Brandt, J. K., Berry, J. R., Afzal, J., Khan, A. M., Jurgen, H., Metje, J., Cheema, A., Shafique, N. A., Lawrence, R. D., & Khan, M. A. (1995). Stratigraphic evidence for an early collision between Northwest India and Asia. Nature, 373, 305–327.

    Article  Google Scholar 

  • Bellou, S., Baeshen, M. N., Elazzazy, A. M., Aggeli, D., Sayegh, F., & Aggelis, G. (2014). Microalgal lipids biochemistry and biotechnological perspectives. Biotechnology Advances, 32(8), 1476–1493.

    Article  Google Scholar 

  • Benton, M. J. (1995). Diversification and extinction in the history of life. Science, 268, 52–58. https://doi.org/10.1126/science.7701342.

    Article  Google Scholar 

  • Bhandari, M., Gupta, M., Pandey, J., & Shukla, P. M. (1994). Chemical profiles in K/T boundary section of Meghalaya, India: Cometary, asteroidalor volcanic. Chemical Geology, 113, 45–60.

    Article  Google Scholar 

  • Bourbonniere, R. A., & Meyers, P. A. (1996). Sedimentary geolipid records of historical changes in the watersheds and productivities of lakes Ontario and Erie Limnol. Oceanography, 41, 352–359.

    Google Scholar 

  • Brocks, J. J., Logan, G. A., Buick, R., & Summons, R. E. (1999). Archean molecular fossils and the early rise of eukaryotes. Science, 285(5430), 1033–1036.

    Article  Google Scholar 

  • Brooks, P. W., Eglinton, G., Gaskell, S. J., McHugh, D. J., Maxwell, J. R., & Philp, R. P. (1976). Lipids of recent sediments, I. Straight-chain hydrocarbons and carboxylic acids of some temperate lacustrine and sub-tropical lagoonal tidal flat sediments. Chemical Geology, 18, 21–38.

    Article  Google Scholar 

  • Bush, R., T. & McInerney, F. A. (2015) Influence of temperature and C4 abundance on n-alkane chain length distributions across the central USA. Organic. Geochemistry 79, 65–73. https://doi.org/10.1007/s12549-022-00534-2.

  • Chakmakhchev, A., Suzuki, N., Suzuki, M., & Takayama, K. (1996). Biomarker distribution in oils from the Akita and Nigata Basins, Japan. Chemical Geology, 133, 1–14.

    Article  Google Scholar 

  • Chenet, A. L., Quidelleur, X., Fluteau, F., & Courtillot, V. (2007). 40K/40Ar dating of the main Deccan large Igneous Province: Further evidence of KTB age and short duration. Earth and Planetary Science Letters, 263, 1–15.

    Article  Google Scholar 

  • Chenet, A. L., Courtillot, V. Fluteau, F., Gerard, M. Quidelleur, X. Khadri, S.F.R., Subbarao, K.V., & Thordarson, T. (2009). Determination of rapid Deccan eruptions across the Cretaceous-Tertiary boundary using paleomagnetic secular variation: 2. Constraints from analysis of eight new sections and synthesis for a 3500-m-thick composite section. Journal of Geophysical Research, 114, B06103, 1–38.

  • Chungkham, P., & Caron, M. (1996). Comparative study of the late Maastrichtian (A. mayaroensis Zone) foraminiferal assemblage from two distant parts of the Tethys Ocean: Semsales, Wildflysch Zone, Switzerland and Ukhrul mélange Zone, India. Revue de Paleobiology, 15(2), 449–517.

  • Colombo, J. C., Silverberg, N., & Gearing, J. N. (1996). Biogeochem-istry or organic matter in the Laurentian Trough, I. Composition and vertical fluxes of rapidly settling particles. Marine Chemisry, 51, 277–293.

  • Connan, J., Bouroullec, J., Dessort, D., & Albrecht, P. (1986). The microbial input in carbonate-anhydrite facies of a sabkha palaeoenvironment from Guatemala: A molecular approach. Organic Geochemistry, 10, 29–50.

    Article  Google Scholar 

  • Cranwell, P. A. (1974). Monocarboxylic acids in lake sediments: Indicators, derived from terrestrial and aquatic biota, of paleoenvironmental trophic levels. Chemical Geology, 14, 1–14.

    Article  Google Scholar 

  • Cranwell, P. A. (1980). Branched/cyclic alkanols in lacustrine sediments (Great Britain): Recognition of iso- and anteiso-branching and stereochemical analysis of homologous alkan-2-01s. Chemical Geology, 30, 15–26.

    Article  Google Scholar 

  • Cranwell, P. A., Eglinton, G., & Robinson, N. (1987). Lipids of aquatic organisms as potential contributors to lacustrine sediments-II. Organic Geochemistry, 11, 513–527.

    Article  Google Scholar 

  • Didyk, B. M., Simoneit, B. R. T., Brassell, S. C., & Eglinton, G. (1978). Organic geochemical indicators of palaeoenvironmental conditions of sedimentation. Nature, 272, 216–222.

    Article  Google Scholar 

  • Eddy, M. P., Schoene, B., Samperton, K. M., Keller, G., Adatte, T., & Khadri, S. R. (2020). U-Pb Zicon age constraints on the earliest eruptions of the Deccan large Igneous Province, Malwa plateu, India. Earth and Planetary Science Letters, 540, 116249.

    Article  Google Scholar 

  • Eglinton, G., & Hamilton, R. J. (1967). Leaf Epicuticular Waxes. Science, 156(3780), 1322–1335. https://doi.org/10.1126/science.156.3780.1322.

    Article  Google Scholar 

  • El Diasty, W. S., Abo Ghonaima, A. A., Mostafa, A. R., El Beialy, S. Y., & Edwards, K. J. (2016). Biomarker characteristics of the Turonian–Eocene succession, Belayim oilfields, Central Gulf of Suez, Egypt. Journal of the Association of Arab Universities for Basic and Applied Sciences, 19, 91–100.

    Article  Google Scholar 

  • Fenchel, T. (2001). Marine bugs and carbon flow. Science, 292, 2444–2445.

    Article  Google Scholar 

  • Fernandez-Gomez, B., Richter, M., Schuler, M., Pinhassi, J., Acinas, S. G., & Gonzalez, J. M. (2013). Ecology of marine Bacteroidetes: A comparative genomics approach. The ISME Journal, 7(572), 1026–1037.

    Article  Google Scholar 

  • Ficken, K. J., Li, B., Swain, D. L., & Eglinton, G. (2000). An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Organic Geochemistry, 31, 745–749.

    Article  Google Scholar 

  • Font, E., Fabre, S., Nedelec, A., Adatte, T., Keller, G., Veiga-Pires, C., Ponte, J., Mirão, J., Khozyem, H., & Spangenberg, J. (2014). Atmospheric halogen and acid rains during the main phase of Deccan eruptions: Magnetic and mineral evidence. In G. Keller & A. C. Kerr (Eds.), Volcanism, impacts, and mass extinctions: Causes and effects. Geological Society of America Special Paper 505, 353–368.. https://doi.org/10.1130/2014.2505(18).

    Chapter  Google Scholar 

  • Font, E., Adatte, T., Andrade, M., Keller, G., Bitchong, A. M., Carvallo, C., Ferreira, J., Diogo, J., & Mirao, J. (2018). Deccan volcanism induced high-stress environment during the Cretaceous-Paleogene transition at Zumaia, Spain: Evidence from magnetic, mineralogical and biostratigraphic records. Earth and Planetary Science Letters, 484, 53–66.

    Article  Google Scholar 

  • Freeman, K.H., & Pancost, R.D. (2014). Biomarkers for Terrestrial Plants and Climate, Treatise on Geochemistry: Second Edition. JAI-Elsevier Science Inc, 395-416.

  • Gelpi, E., Schneider, H., Mann, J., & Oró, J. (1970). Hydrocarbons of geochemical significance in microscopic algae. Phytochemistry, 9, 603–612.

    Article  Google Scholar 

  • Gertsch, B., Keller, G., Adatte, T., Garg, R., Prasad, V., Berner, Z., & Fleitmann, D. (2011). Meghalaya, India. Earth and Planetary Science Letters, 310, 272–285.

    Article  Google Scholar 

  • Grimalt, J., & Albaigés, J. (1987). Sources and occurrence of C12-C22 n-alkane distributions with even carbon-number preference in sedimentary environments. Geochimica et Cosmochimica Acta, 51, 1379–1384.

    Article  Google Scholar 

  • Gross, Michael. (2017). An investigation of paleo-wildfires during the Cretaceous-Paleogene (k/ pg) boundary at El kef, Tunisia [undergraduate honors theses]. Boulder: University of Colorado, 584, 1351.

  • Gulick, S., Bralower T.J., Ormö J., Hall B., Grice K., Schaefer B., Lyons S., Freeman K.H., Morgan J.V., Artemieva N., Kaskes P., de Graaff S.J., Whalen M.T., Collins G.S., Tikoo S.M., Verhagen C., Christeson G.L., Claeys P., Coolen M.J.L., Goderis S., Goto K., Grieve R.A.F., McCall N., Osinski G.R., Rae A.S.P., Riller U., Smit J., Vajda V., Wittmann A., Expedition 364 Scientists. (2019). First days of the Cenozoic: Proceedings of the National Academy of Sciences of the United States of America, 116, 19342– 19351, https://doi.org/10.1073/pnas.1909479116.

  • Hallam, A., & Wignall, P. B. (1999). Mass extinctions and sea level changes. Earth Science Reviews, 48(4), 217–250.

    Article  Google Scholar 

  • Haq, B. U. (2014). Cretaceous eustacy revisited. Global and Planetay Change, 113, 44–58.

    Article  Google Scholar 

  • Hu, J. F., Zhang, H. B., & Peng, P. A. (2006). Fatty acid composition of surface sediments in the subtropical Pearl River estuary and adjacent shelf, southern China. Estuarine, Coastal and Shelf Science, 66(1-2), 346–356.

    Article  Google Scholar 

  • Hull, P. M., Bornemann, A., Penman, D. E., Henehan, M. J., Norris, R. D., Wilson, P. A., Blum, P., Alegret, L., Batenburg, S. J., Bown, P. R., & Bralower, T. J. (2020). On impact and volcanism across the Cretaceous-Paleogene boundary. Science, 367, 266–272. https://doi.org/10.1126/science.aay5055.

  • Jandl, G., Leinweber, P., & Schulten, H. R. (2007). Origin and fate of soil lipids in a Phaeozem under rye and maize monoculture in Central Germany. Biology and Fertility of Soils, 43, 321–332.

    Article  Google Scholar 

  • Jeng, W.-L. (2006). Higher plant n-alkane average chain length as an indicator of petrogenic hydrocarbon contamination in marine sediments. Marine Chemistry, 102(3-4), 242–251. https://doi.org/10.1016/j.marchem.2006.05.001.

    Article  Google Scholar 

  • Joseph, M. M., Renjith, K. R., Kumar, R. C. S., & Chandramohanakumar, N. (2012). Assessment of organic matter sources in the tropical mangrove ecosystems of Cochin, Southwest India. Environmental Forensics, 3(3), 262–271.

    Article  Google Scholar 

  • Keller, G. (2005). Biotic effects of late Maastrichtian mantle plume volcanism: Implications for impacts and mass extinctions. Lithos, 79(3-4), 317–341. https://doi.org/10.1016/j.lithos.2004.09.005.

    Article  Google Scholar 

  • Keller, G. (2014). Deccan volcanism, the Chicxulub impact, and the end-Cretaceous mass extinction: Coincidence? Cause and effect? In G. Keller, & A. C. Kerr (Eds.), Volcanism, Impacts, and Mass Extinctions: Causes and Effects: Geological Society of America Special Paper, 505. https://doi.org/10.1130/2014.2505(03).

  • Keller, G., & Lindinger, M. (1989). Stable isotope, TOC and CaCO3 record across the Cretaceous/Tertiary boundary at El kef, Tunisia. Palaeogeography Palaeoclimatology Palaeoecology, 73, 243–265.

  • Keller, G., & Pardo, A. (2004). Disaster opportunists Guembelitrinidae-index for environmental catastrophes: Marine Micropaleontology, 53, 83-116, https://doi.org/10.1016/j.marmicro.2004.04.012.

  • Keller, G., Adatte, T., Tantawy, A. A., Berner, Z., & Stüben, D. (2007). High stress Late Cretaceous to early Danian paleoenvironment in the Neuquen Basin, Argentina. Cretaceous Research, 28, 939–960. https://doi.org/10.1016/j.cretres.2007.01.006.

  • Keller, G., Khozyem, H. M., Adatte, T., Malarkodi, N., Spangenberg, J. E., & Stinnesbeck, W. (2013). Chicxulub impact spherules in the North Atlantic and Caribbean: Age constraints and Cretaceous-Tertiary boundary hiatus. Geological Magazine, 150, 885–907. https://doi.org/10.1017/S0016756812001069.

  • Keller, G., Mateo, P., Punekar, J., Khozyem, H., Gertsch, B., Spangenberg, J., Bitchong, A. M., & Adatte, T. (2018). Environmental changes during the Cretaceous-Paleogene mass extinction and Paleocene-Eocene thermal maximum: Implications for the Anthropocene. Gondwana Research, 56, 69–89.

  • Keller, G., Mateo, P., Monkenbusch, J., Thibault, N., Punekar, J., Spangenberg, J. E., Abramovichf, S., Ashckenazi-Polivodag, S., Schoene, B., Eddy, M. P., Samperton, K. M., Khadri, S. F. R., & Adatte, T. (2020). Mercury linked to Deccan traps volcanism, climate change and the end-Cretaceous mass extinction. Global and Planetary Change, 194, 103312.

  • Killops, S. D. & Killops, V. J. (1993). An Introduction to Organic Geochemistry (pp.1-265). Harlow: Longman, co published in the USA by John Wiley.

  • Kominz, M. A., Browning, J. V., Miller, K. G., Sugarman, P. J., Mizinseva, S., & Scotese, C. R. (2008). Late Cretaceous to Miocene Sea level estimates from the New Jersey Delaware coastal plain coreholes: An error analysis. Basin Research, 20(2), 211–226.

  • Krishnan, M. S. (1960). Geology of India and Burma (4th Edition) (pp. 1-604) Madras: Higginbothams (Private) Ltd.

  • LeBlane, C. G., Bourbonniere, R. A., Schwarcz, H. P., & Risk, M. J. (1989). Carbon isotopes and fatty acids analysis of the sediments of negro harbour, Nova Scotia, Canada. Estuarine, Coastal and Shelf Science, 28, 261–276.

  • Mann, A.L., Goodwin, N.S., & Lowe, S. (1987). Geochemical characteristics of lacaustrine source rocks: A combined palynological/molecular study of a tertiary sequence from offshore China. In Proceedings of the Indonesian petroleum association, sixteenth annual convention. Jakarta, Indonesian Petroleum Association 1, 241-258.

  • Marzi, R., Torkelson, B. E., & Olson, R. K. (1993). A revised carbon preference index. Organic Geochemistry, 20, 1303–1306.

    Article  Google Scholar 

  • Medlicott, H. B. (1871). Geological sketch of Shillong plateau. Memoirs of the Geological Survey of India, 7, 151–207.

    Google Scholar 

  • Meyers, P. A. (1997). Organic geochemical proxies of paleoceanographic, paleolimonologic and paleoclimatic processes. Organic Geochemistry, 27(5-6), 213–250.

    Article  Google Scholar 

  • Meyers, P. A. (2003). Applications of organic geochemistry to paleolimnological reconstructions: A summary of examples from the Laurentian Great Lakes. Organic Geochemistry, 34, 261–289.

    Article  Google Scholar 

  • Mita, H., & Shimoyama, A. (1999). Characterization of n-alkanes, pristine and phytane in the cretaceous/ tertiary boundary sediments at Kawaruppu, Hokkaido, Japan. Geochemical Journal, 33, 285–294.

    Article  Google Scholar 

  • Mizukami, T., Kaiho, K., & Oba, M. (2013). Significant changes in land vegetation and oceanic redox across the Cretaceous/Paleogene boundary. Palaeogeography Palaeoclimatology Palaeoecology, 369, 41–47.

  • Mukhopadhyay, S. K. (2008). Planktonic foraminiferal succession in Late Cretaceous to early Palaeocene strata in Meghalaya, India. Lethaia, 41, 71–84.

  • Mukhopadhyay, S. K. (2009). Convener’s report for 2008 on the progress of work in the IGCP project 507 on ‘Palaeoclimate in Asia during the Cretaceous: Their variations, causes, and biotic and environmental responses’. IGCP India Newsletter, 29, 11–13.

  • Mukhopadhyay, S.K. (2010). Palaeoclimate in Asia during the Cretaceous: Their Variations, Causes, and Biotic and Environmental Responses. Final Report of the IGCP Project 507 (2006–2010): Accessible through the Geological Survey of India portal, p. 98.

  • Mukhopadhyay, S. K. (2012). Guembelitria (foraminifera) in the Upper Cretaceous-lower Paleocene succession of the Langpar formation, India, and its paleoenvironmental implication. Geological Society of India, 79, 627–651.

  • Mukhopadhyay, S. K. (2016). Planktonic foraminiferal zonation and sea-level changes in the upper Maastrichtian-middle Danian successions of Meghalaya, India. Stratigraphy, 13(4), 245–276.

    Google Scholar 

  • Mukhopadhyay, S. K., Pal, S., & Shrivastava, J. P. (2017). Comments on the paper published by Sial et al (2016), Mercury enrichments and Hg isotopes in Cretaceouse/Paleogene boundary successions: Links to volcanism and palaeoenvironmental impacts. Cretaceous Research, 66, 60–81.

    Google Scholar 

  • Muller-Karger, F. E., Varela, R., Thunell, R., Luerssen, R., Hu, C., & Walsh, J. J. (2005). The importance of continental margins in the global carbon cycle. Geophysical Research Letters, 32, L01602.

    Article  Google Scholar 

  • Nagappa, Y. (1959). Foraminiferal biostratigraphy of the Cretaceous-Eocene succession in the India-Pakistan-Burma region. Micropalaeontology, 5, 145–192.

  • Napolitano, G. E., Pollero, R. J., Gayoso, A. M., MacDonald, B. A., & Thompson, R. J. (1997). Fatty acids as trophic markers of phytoplankton blooms in the Bahia Blanca estuary (Buenos Aires, Argentina) and in Trinity Bay, (Newfoundland, Canada). Biochemical Systematics and Ecology, 25, 739–755.

  • Niggemann, J., & Schubert, C. J. (2006). Sources and fate of amino sugars in coastal Peruvian sediments. Geochimica et Cosmochimica Acta, 70, 2229–2237. https://doi.org/10.1016/j.gca.2006.02.004.

  • Ogg, J.G. (2012). Chapter 5 - Geomagnetic Polarity Time Scale (pp. 85-113). In The Geologic Time Scale. Boston: Elsevier. https://doi.org/10.1016/B978-0-444-59425-9.00005-6.

  • Ourisson, G., Albrecht, P., & Rohmer, M. (1982). Predictive microbial biochemistry-from molecular fossils to procaryotic membranes. Trends in Biochemical Sciences, 7, 236–239.

    Article  Google Scholar 

  • Pal, S.. & Shrivastava, J.P. (2020). Cretaceous/Palaeogene boundary transition induced lattice defects in illite and kaolinite associated with the Um-Sohryngkew river section, Meghalaya, India. Solid Earth Sciences 5, 202–222.

  • Pal, S., Shrivastava, J. P., & Mukhopadhyay, S. K. (2015a). Polycyclic aromatic hydrocarbon compound excursions and K/Pg transition in the Late Cretaceous-early Paleogene succession of the um-Sohryngkew River section, Meghalaya. Current Science, 109, 1140–1150.

  • Pal, S., Shrivastava, J. P., & Mukhopadhyay, S. K. (2015b). Physils and organic matter-base palaeoenvironmental records of the K/Pg boundary transition from the Late Cretaceous early Palaeogene succession of the Um Sohryngkew river section of Meghalaya, India. Chemie der Erde-Geochemistry, 75, 445–463.

  • Pal, S., Shrivastava, J. P., & Mukhopadhyay, S. K. (2015c). Mineral chemistry of clays associated with the Late Cretaceous-early Palaeogene succession of the um Sohryngkew river section of Meghalaya: Palaeoenvironmental inferences and K/Pg transition. Journal of Geological Society of India, 86, 631–647.

  • Pandey, J. (1981). Cretaceous foraminifera of Um Sohryngkew River section, Meghalaya. Journal of Palaeontological Society of India, 25, 53–74.

    Google Scholar 

  • Pandey, J. (1990). Cretaceous/Tertiary boundary, iridium anomaly and foraminifer breaks in the Um Sohryngkew River section. Current Science, 59, 570–575.

    Google Scholar 

  • Pardo, A., Ortiz, N. & Keller, G. (1996). Latest Maastrichtian and K/T boundary foraminiferal turnover and environmental changes at Agost, Spain. In N. MacLeod, & G. Keller (Eds.), The Cretaceous-Tertiary mass extinction: Biotic and environmental effects, 157-191. New York: Norton Press.

  • Parkes, R. J. (1987). Analysis of microbial communities within sediments using biomarkers. In M. Fletcher, T. R. G. Gray, & J. G. Jones (Eds.), Ecology of Microbial Communities, London Cambridge University Press.

    Google Scholar 

  • Parrish, C. C., Abrajano, T. A., Budge, S. M., Helleur, R. J., Hudson, E. D., Pulchan, K., & Ramos, C. (2000). Lipids and phenolic biomarkers in marine ecosystems: Analysis and applications. In P. Wangersky (Ed.), The handbook of environmental chemistry. Marine chemistry 5, part D (pp. 193–223). Berlin: Springer.

  • Peters, K. E., Walters, C. C., & Moldowan, J. M. (2005). The biomarker guide. Cambridge: Cambridge University Press.

  • Punekar, J., Keller, G., Khozyem, H. M., Adatte, T., Font, E., & Spangenberg, J. (2016). A multi-proxy approach to decode the end-Cretaceous mass extinction. Palaeogeography Palaeoclimatology Palaeoecology, 441(1), 116–136.

  • Poynter, J.G., & Eglinton, G. (1990). Molecular composition of three sediments from hole 717C: The Bengal Fan. In J. R. Cochran, D.A.V. Stow et al. (Eds.), Proceedings of the ocean drilling program scientific results, 116, 155-161.

  • Ray, L., Gupta, R. K., Chopra, N., Gopinadh, D., & Dwivedi, S. K. (2021). Thermal and physical properties of Deccan basalt and Neoarchean basement cores from a deep scientific borehole in the Koyna−Warna seismogenic region, Deccan Volcanic Province, western India: Implications on thermal modeling and seismogenesis. Earth and Space Science, 8, e2021EA001645. https://doi.org/10.1029/2021EA001645.

  • Reitan, K. I., Rainuzzo, J. R., & Olsen, Y. (1994). Effect 711 of nutrient limitation on fatty acid and lipid content of marine microalgae. Journal of Phycology, 30, 972–979.

    Article  Google Scholar 

  • Renne, P. R., Deino, A. L., Hilgen, F. J., Kuiper, K. F., Mark, D. F., Mitchell 3rd, W. S., Morgan, L. E., Mundil, R., & Smitet, J. (2013). Time scales of critical events around the Cretaceous-Paleogene boundary. Science, 339, 684–687.

    Article  Google Scholar 

  • Renne, P. R., Sprain, C. J., Richards, M. A., Self, S., Vanderkluysen, L., & Pande, K. (2015). State shift in Deccan volcanism at the Cretaceous-Paleogene boundary, possibly induced by impact. Science, 350, 6256–6278.

  • Rezanka, T., & Sigler, K. (2009). Odd-numbered very-long-chain fatty acids from the microbial, animal and plant kingdoms. Progress in Lipid Research, 48, 206–238.

    Article  Google Scholar 

  • Roy, S., Ghosh, S., & Sanyal, P. (2021). Carbon reservoir perturbations induced by Deccan volcanism: Stable isotope and biomolecular perspectives from shallow marine environment in eastern India. Geobiology, 20(1), 22–40. https://doi.org/10.1111/gbi.12468.

    Article  Google Scholar 

  • Royer, D. L., Berner, R. A., Montañez, I. P., Tabor, N. J., & Beerling, D. J. (2004). CO2 as a primary driver of phanerozoic climate. GSA Today, 14(3), 4–10.

    Article  Google Scholar 

  • Samant, B., Mohabey, D. M., Srivastava, P., & Thakre, D. (2014). Palynology and clay mineralogy of the Deccan volcanic associated sediments of Saurashtra, Gujarat: Age and paleoenvironments. Journal of Earth System Science, 123(1), 219–232.

    Article  Google Scholar 

  • Sargent, J. R., Parkers, R. J., Mueller-Harvey, I., & Henderson, R. J. (1987). Lipid biomarkers in marine biology. In M. A. Sleigh (Ed.), Microbes in the sea (pp. 119–138). Chichester: Ellis Horwood Ltd.

  • Schoene, B., Samperton, K. M., Eddy, M. P., Keller, G., Adatte, T., Bowring, S. A., Khadri, S. F. R., & Gertsch, B. (2015). U-Pb geochronology of the Deccan traps and relation to the end-Cretaceous mass extinction. Science, 347(6218), 182–184.

    Article  Google Scholar 

  • Schoene, B., Eddy, M. P., Samperton, K. M., Keller, C. B., Keller, G., Adatte, T., & Khadri, S. F. R. (2019). U-Pb constraints on pulsed eruption of the Deccan Traps across the end- Cretaceous mass extinction. Science, 363, 862–866.

    Article  Google Scholar 

  • Schoene, B., Eddy, M. P., Keller, C. B., & Samperton, K. M. (2020). An evaluation of Deccan traps eruption rates using geochronologic data. Geochronology. https://doi.org/10.5194/gchron-2020-11.

  • Schulte, P., Alegret, L., Arenillas, I., Arz, J. A., Barton, P. J., Bown, P. R., Bralower, T. J., Christeson, G. L., Claeys, P., Cockell, C. S., Collins, G. S., Deutsch, A., Goldin, T. J., Goto, K., Grajales-Nishimura, J. M., Grieve, R. A. F., Gulick, S. P. S., Johnson, K. R., Kiessling, W., et al. (2010). The Chicxulub asteroid impact and mass extinction at the Cretaceous- Paleogene boundary. Science, 327, 1214–1218.

  • Sepúlveda, J., Wendler, J. E., Summons, R. E., & Hinrichs, K. U. (2009). Rapid resurgence of marine productivity after the Cretaceous-Paleogene mass extinction. Science, 326, 129–131.

  • Shrivastava, J. P., Mukhopadhyay, S. K., & Pal, S. (2013). Chemico-mineralogical attributes of clays from the Late Cretaceous-early Palaeogene succession of the Um Sohryngkew river section of Meghalaya, India: Palaeoenvironmental inferences and the K/Pg boundary. Cretaceous Research, 45, 247–257.

  • Sial, A. N., Chen, J., Lacerda, L. D., Frei, R., Tewari, V. C., Pandit, M. K., Gaucher, C., Ferreira, V. P., Cirilli, S., Peralta, S., Korte, C., Barbosa, J. A., & Pereira, N. S. (2016). Mercury enrichments and Hg isotopes in Cretaceouse/Paleogene boundary successions: Links to volcanism and palaeoenvironmental impacts. Cretaceous Research, 66, 60–81.

    Article  Google Scholar 

  • Sikes, E. L., Uhle, M. E., Nodder, S. D., & Howard, M. E. (2009). Sources of organic matter in a coastal marine environment: Evidence from nalkanes and their δ13C distributions in the Hauraki Gulf, New Zealand. Marine Chemistry, 113(3-4), 149–163.

    Article  Google Scholar 

  • Sosa-Montes de Oca, G., Rodrigo-G’amiz, M., Martínez-Ruiz, F., Rodríguez-Tovar, F. J., Castro, J. M., Quijano, M. L., & Pancost, R. D. (2021). Minor changes in biomarker assemblages in the aftermath of the Cretaceous-Paleogene mass extinction event at the Agost distal section (Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 569, 110310.

  • Sprain, C. J., Renne, P. R., Wilson, G. P., & Clemens, W. A. (2015). High-resolution chronostratigraphy of the terrestrial Cretaceous-Paleogene transition and recovery interval in the Hell Creek region, Montana. Geological Society of America Bulletin, 127, 393–409.

  • Sprain, C. J., Renne, P. R., Vanderkluysen, L., Pande, K., Self, S., & Mittal, T. (2019). The eruptive tempo of Deccan volcanism in relation to the Cretaceous-Paleogene boundary. Science, 363, 866–870.

  • Tobin, T. S., Ward, P. D., Steig, E. J., Olivero, E. B., Hilburn, I. A., Mitchell, R. N., Diamond, M. R., Raub, T. D., & Kirschvink, J. L. (2012). Extinction patterns, d18O trends, and magnetostratigraphy from a southern high-latitude Cretaceouse-Paleogene section: Links with Deccan volcanism. Palaeogeography, Palaeoclimatology, Palaeoecology, 350-352, 180–188. https://doi.org/10.1016/j.palaeo.2012.06.029.

  • Tolosa, I., Mora, S. D., Sheikholeslami, M. R., Villeneuve, J. P., Bartocci, J., & Cattini, C. (2004). Aliphatic and aromatic hydrocarbons in coastal Caspian Sea sediments. Marine Pollution Bulletin, 48, 44–60.

    Article  Google Scholar 

  • Vajda, V., Raine, J. I., & Hollis, C. J. (2001). Indication of global deforestation at the Cretaceous-Tertiary boundary by Newzealand fern spike. Science, 294, 1700–1702.

  • Valentine, D. L., & Reddy, C. M. (2015). Latent hydrocarbons from cyanobacteria. Proceedings of the National Academy of Sciences, 112(44), 13434–13435.

    Article  Google Scholar 

  • Van Bergen, P. F., Bull, I. D., Poulton, P. R., & Evershed, R. P. (1997). Organic geochemical studies of soils from the Rothamsted classical experiments - 1. Total lipidextracts, solvent insoluble residues and humic acids from Broadbalk wilderness. Organic Geochemistry, 26, 117–135.

    Article  Google Scholar 

  • Venkatesan, M. I., & Dahl, J. (1989). Organic geochemical evidence for global fires at the Cretaceous/Tertiary boundary. Nature, 338, 57–60.

  • Volkman, J. K. (1986). A review of sterol markers for marine and terrigenous organic matter. Organic Geochemistry, 9, 83–99.

    Article  Google Scholar 

  • Volkman, J. K. (2005). Sterols and other triterpenoids: Source specificity and evolution of biosynthetic pathways. Organic Geochemistry, 36, 139–159.

    Article  Google Scholar 

  • Wakita, K., & Metcalfe, I. (2005). Ocean plate stratigraphy in east and Southeast Asia. Journal of Asian Earth Sciences, 24, 679–702.

    Article  Google Scholar 

  • Wilf, P., Johnson, K.R., & Huber, B.T. (2003). Correlated terrestrial and marine evidence for global climate changes before mass extinction at the Cretaceous-Paleogene boundary. Proceedings of the National Academy of Sciences USA, 100, 599-604.

  • Wolbach, W. S., Gilmour, I., Anders, E., Orth, C. J., & Brooks, R. R. (1988). Global fire at the Cretaceous-Tertiary boundary. Nature, 334, 665–669.

  • Xu, Y. P., Mead, R. N., & Jaffe, R. (2006). A molecular marker-based assessment of sedimentary organic matter sources and distributions in Florida bay. Hydrobiologia, 569, 179–192.

    Article  Google Scholar 

  • Yamamoto, M., Ficken, K., Baas, M., Bosch, H., & Jan Leeuw, J. W. (1996). Molecular palaeontology of the earliest Danian at Geulhemmerberg (the Netherlands). Geologie en Mijnbouw, 75, 255–267.

    Google Scholar 

  • Zhang, Z., Zhao, M., Lu, H., & Faiia, A. M. (2003). Lower temperature as the main cause of C4 plant declines during the glacial periods on the Chinese loess plateau. Earth and Planetary Science Letters, 214, 467–481.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge Director, CSIR-National Geophysical Research Institute for providing GC-MS analyses facilities. For CHN analysis, we acknowledge Prof. Hema Achyuthan, Department of Geology, Anna University. We are thankful to the reviewers and handling editor for offering valuable comments to improve the manuscript.

Funding

SP and JPS acknowledge Council of Scientific and Industrial Research, New Delhi for financial support [Project Grant No. 24(0342)/16/EMR-II]. SP also acknowledges UGC-Dr. D.S. Kothari Post-Doctoral Fellowship [Grant: F.4-212006 (BSR)/ES/18-19/0037] for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaya Prakash Shrivastava.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, S., Singamshetty, K.M., Shrivastava, J.P. et al. Evidence of biotic recovery through the Cretaceous/Palaeogene transition from the Mahadeo-Cherrapunji succession in the Meghalaya shelf, India. Palaeobio Palaeoenv 103, 221–247 (2023). https://doi.org/10.1007/s12549-022-00534-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12549-022-00534-2

Keywords

Navigation