Skip to main content
Log in

Properties of quasi-Boolean function on quasi-Boolean algebra

  • Original Article
  • Published:
Fuzzy Information and Engineering

Abstract

In this paper, we investigate the following problem: give a quasi-Boolean function Ψ(x 1, …, x n ) = (a ∧ C) ∨ (a 1 ∧ C 1) ∨ … ∨ (a p ∧ C p ), the term (a ∧ C) can be deleted from Ψ(x 1, …, x n )? i.e., (a ∧ C) ∨ (a 1 ∧ C 1) ∨ … ∨ (a p ∧ C p ) = (a 1 ∧ C 1) ∨ … ∨ (a p ∧ C p )? When a = 1: we divide our discussion into two cases. (1) ℑ1(Ψ,C) = ø, C can not be deleted; ℑ1(Ψ,C) ≠ ø, if S 0 i ≠ ø (1 ≤ i ≤ q), then C can not be deleted, otherwise C can be deleted. When a = m: we prove the following results: (m∧C)∨(a 1∧C 1)∨…∨(a p ∧C p ) = (a 1∧C 1)∨…∨(a p ∧C p ) ⇔ (m ∧ C) ∨ C 1 ∨ … ∨C p = C 1 ∨ … ∨C p . Two possible cases are listed as follows, (1) ℑ2(Ψ,C) = ø, the term (m∧C) can not be deleted; (2) ℑ2(Ψ,C) ≠ ø, if (∃i 0) such that \(S'_{i_0 } \) = ø, then (m∧C) can be deleted, otherwise ((m∧C)∨C 1∨…∨C q )(v 1, …, v n ) = (C 1 ∨ … ∨ C q )(v 1, …, v n )(∀(v 1, …, v n ) ∈ L n3 ) ⇔ (C ′1 ∨ … ∨ C ′ q )(u 1, …, u q ) = 1(∀(u 1, …, u q ) ∈ B n2 ).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hammer P L, Rudeanu S (1968) Boolean methods in operations research and related areas. Springer-Verlag, Berlin

    MATH  Google Scholar 

  2. Hammer P L, Kogan A (1992) Horn functions and their DNF’s. Information Processing Lette. 44: 23–29

    Article  MathSciNet  MATH  Google Scholar 

  3. Boros E, Ibaraki T and Makino K (1999) Logical analysis of binary data with missing bits. Artificial Intelligence 107: 219–263

    Article  MathSciNet  MATH  Google Scholar 

  4. Bshouty N H (1995) Exact learning Boolean functions via the monotone theory. Information and Computation 123: 146–153

    Article  MathSciNet  MATH  Google Scholar 

  5. Boros E, Crama Y, Hammer P L (1990) Polynomial time inference of all valid implications for horn and related formulae. Annals of Mathematics and Artificial Intelligence 1: 21–32

    Article  MATH  Google Scholar 

  6. Boros E, Gurrich V, Hammer P L, Ibaraki T and Kogan A (1995) Decompositions of partially defined Boolean functions. Discrete Applied Mathematics 62: 51–75

    Article  MathSciNet  MATH  Google Scholar 

  7. Boros E, Hammer P L, Minoux M, Rader D (1999) Optimal cell flipping to minimize channel density in VLSI design and pseudo-Boolean optimization. Discrete Applied Mathematics 90: 69–88

    Article  MathSciNet  MATH  Google Scholar 

  8. Ekin O, Foldes S, Hammer P L, Hellerstein L (2000) Equational characterizations of Boolean function classes. Discrete Mathematics 211: 27–51

    Article  MathSciNet  MATH  Google Scholar 

  9. Fraenkel A S, Hammer P L (1984) Pseudo-Boolean functions and their graphs. Annals of Discrete Mathematics 20: 137–146

    MathSciNet  Google Scholar 

  10. Simeone B (1979) A generalized consensus approach to non-linear 0–1 optimization. Research Report, University of Waterloo, Department of Combinatorics and Optimization: 79–83

  11. Davio M, Deschamps J P, Thayse A (1978) Discrete and switching functions. McGraw Hill.

  12. Foldes S, Hammer P L (2000) Monotone, horn and quadratic pseudo-Boolean functions. Journal Of Universal Computer Science 6(1): 97–104

    MathSciNet  MATH  Google Scholar 

  13. Foldes S, Hammer P L (2000) Disjunctive and conjunctive representations in finite lattices and convexity spaces. Rutgers University, RUTCOR Research Reports, RRR12-2000

  14. Quine W V (1955) A way to simplify truth function. American Mathematical Monthly 62: 627–631

    Article  MathSciNet  MATH  Google Scholar 

  15. Van de Vel M (1993) Theory of convex structures. North-Holland

  16. Störmer H (1990) Binary functions and their applications. Springer-Verlag, Berlin

    MATH  Google Scholar 

  17. Hammer P L, Rosenberg I G, Rudeanu S (1963) On the minimization of pseudo-Boolean function. Stud. Cerc. Matem. 14: 359–364

    MathSciNet  Google Scholar 

  18. Gottschalk W H (1953) The theory of quaternality. Jounal of Symbolic Logic 18: 193–196

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang-jin Cheng.

About this article

Cite this article

Cheng, Yj., Xu, Lx. Properties of quasi-Boolean function on quasi-Boolean algebra. Fuzzy Inf. Eng. 3, 275–291 (2011). https://doi.org/10.1007/s12543-011-0083-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12543-011-0083-8

Keywords

Navigation