Skip to main content
Log in

Polynomial-time inference of all valid implications for Horn and related formulae

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

This paper investigates the complexity of a general inference problem: given a propositional formula in conjunctive normal form, find all prime implications of the formula. Here, a prime implication means a minimal clause whose validity is implied by the validity of the formula. We show that, under some reasonable assumptions, this problem can be solved in time polynomially bounded in the size of the input and in the number of prime implications. In the case of Horn formulae, the result specializes to yield an algorithm whose complexity grows only linearly with the number of prime implications. The result also applies to a class of formulae generalizing both Horn and quadratic formulae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Aspvall, Recognizing disguised NR(1)-instances of the satisfiability problem, J. Algorithms 1 (1980) 97–103.

    Article  MathSciNet  MATH  Google Scholar 

  2. B. Aspvall, M.F. Plass and R.E. Tarjan, A linear-time algorithm for testing the truth of certain quantified Boolean formulas, Information Processing Lett. 8 (1979) 121–123.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Blake, Canonical expressions in Boolean algebra, Ph.D. Disertation, University of Chicago, ILL (1937).

    Google Scholar 

  4. F.M. Brown, The origin of the method of iterated consensus, IEEE Trans. Computers C-17 (1968) 802.

    Article  Google Scholar 

  5. C.L. Chang and R.C. Lee,Symbolic Logic and Mechanical Theorem Proving (Academic Press, New York, 1973).

    MATH  Google Scholar 

  6. S.A. Cook, The complexity of theorem-proving procedures,3rd Annual ACM Symp. on Theory of Computing (1971) pp. 151–158.

  7. W.F. Dowling and J.H. Gallier, Linear-time algorithms for testing the satisfiability of propositional Horn formulae, J. Logic Programming 3 (1984) 267–284.

    Article  MathSciNet  Google Scholar 

  8. H. Gallaire and J. Minker,Logic and Databases (Plenum Press, New York, 1978).

    Google Scholar 

  9. P. Hansen, A cascade algorithm for the logical closure of a set of binary relations, Information Processing Lett. 5 (1976) 50–55.

    Article  MathSciNet  MATH  Google Scholar 

  10. P. Hansen, B. Jaumard and M. Minoux, A linear expected-time algorithm for deriving all logical conclusions implied by a set of Boolean inequalities, Math. Programming 34 (1986) 223–231.

    Article  MathSciNet  MATH  Google Scholar 

  11. F. Hayes-Roth, D.A. Waterman and D.B. Lenat,Building Expert Systems (Addison-Wesley, Reading, MA, 1983).

    Google Scholar 

  12. J.N. Hooker, Generalized resolution and cutting planes, Ann. Oper. Res. 12 (1988) 217–239.

    Article  MathSciNet  Google Scholar 

  13. J.N. Hooker, A quantitative approach to logical inference, Decision Support Systems 4 (1988) 45–69.

    Article  Google Scholar 

  14. A. Itai and J.A. Makowsky, Unification as a complexity measure for logic programming, J. Logic Programming 4 (1987) 105–117.

    Article  MathSciNet  MATH  Google Scholar 

  15. N.D. Jones and W.T. Laaser, Complete problems for deterministic polynomial time, Theoretical Computer Sci. 3 (1976) 105–117.

    Article  MathSciNet  Google Scholar 

  16. R.A. Kowalski,Logic for Problem Solving (Elsevier, New York, 1979).

    MATH  Google Scholar 

  17. H.R. Lewis, Renaming a set of clauses as a Horn set, J. Assoc. Computing Machinery 25 (1978) 134–135.

    Article  MATH  Google Scholar 

  18. M. Minoux, LTUR: A simplified linear-time unit resolution algorithm for Horn formulae and computer implementation, Information Processing Lett. 29 (1988) 1–12.

    Article  MathSciNet  MATH  Google Scholar 

  19. J.S. Provan and M.O. Ball, Efficient recognition of matroid and 2-monotonic systems, in:Applications of Discrete Mathematics, eds. R.D. Ringeisen and F.S. Roberts (SIAM, Philadelphia, 1988) pp. 122–134.

    Google Scholar 

  20. W.V. Quine, A way to simplify truth functions, Am. Math. Monthly 62 (1955) 627–631.

    Article  MathSciNet  MATH  Google Scholar 

  21. W.V. Quine, On cores and prime implicants of truth functions, Am. Math. Monthly 66 (1959) 755–760.

    Article  MathSciNet  MATH  Google Scholar 

  22. J.A. Robinson, A machine-oriented logic based on the resolution principle, J. Assoc. Computing Machinery 12 (1965) 23–41.

    Article  MATH  Google Scholar 

  23. E.W. Samson and B.E. Mills, Circuit minimization: algebra and algorithms for new Boolean canonical expressions, Air Force Technical Report AFCRC 54-21 (1954).

  24. T.J. Schaefer, The complexity of satisfiability problems,10th Annual ACM Symp. on Theory of Computing (1978) pp. 216–226.

  25. L.G. Valiant, The complexity of enumeration and reliability problems, SIAM J. Computing 8 (1979) 410–421.

    Article  MathSciNet  MATH  Google Scholar 

  26. J. Wang and J. Vande Vate, Question-asking strategies for Horn clause systems, Ann. Math. Art. Intell. 1 (1990) 359–370.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

To the memory of Robert G. Jeroslow

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boros, E., Crama, Y. & Hammer, P.L. Polynomial-time inference of all valid implications for Horn and related formulae. Ann Math Artif Intell 1, 21–32 (1990). https://doi.org/10.1007/BF01531068

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01531068

Keywords

Navigation