Alibert, C. 2016. Rare earth elements in Hamersley BIF minerals. Geochimica et Cosmochimica Acta 184: 311–328. https://doi.org/10.1016/j.gca.2016.03.026.
Article
Google Scholar
Allwood, A.C., J.P. Grotzinger, A.H. Knoll, I.W. Burch, M.S. Anderson, M.L. Coleman, and I. Kanik. 2009. Controls on development and diversity of Early Archean stromatolites. Proceedings of the National Academy of Sciences of the United States of America 106(24): 9548–9555. https://doi.org/10.1073/pnas.0903323106.
Article
Google Scholar
Altermann, W., and J. Kazmierczak. 2003. Archean microfossils: A reappraisal of early life on Earth. Research in Microbiology 154: 611–617. https://doi.org/10.1016/j.resmic.2003.08.006.
Article
Google Scholar
Amstaetter, K., T. Borch, and A. Kappler. 2012. Influence of humic acid imposed changes of ferrihydrite aggregation on microbial Fe(III) reduction. Geochimica et Cosmochimica Acta 85: 326–341. https://doi.org/10.1016/j.gca.2012.02.003.
Article
Google Scholar
Bau, M., and P. Möller. 1993. Rare earth element systematics of the chemically precipitated component in early precambrian iron formations and the evolution of the terrestrial atmosphere-hydrosphere-lithosphere system. Geochimica et Cosmochimica Acta 57(10): 2239–2249. https://doi.org/10.1016/0016-7037(93)90566-F.
Article
Google Scholar
Baumgartner, R.J., M.J. van Kranendonk, D. Wacey, M.L. Fiorentini, M. Saunders, S. Caruso, A. Pages, M. Homann, and P. Guagliardo. 2019. Nano−porous pyrite and organic matter in 3.5-billion-year-old stromatolites record primordial life. Geology 47(11): 1039–1043. https://doi.org/10.1130/G46365.1.
Article
Google Scholar
Beard, B.L., C.M. Johnson, L. Cox, H. Sun, K.H. Nealson, and C. Aguilar. 1999. Iron isotope biosignatures. Science 285(5435): 1889–1892. https://doi.org/10.1126/science.285.5435.1889.
Article
Google Scholar
Bekker, A., H.D. Holland, P.-L. Wang, D. Rumble, H.J. Stein, J.L. Hannah, L.L. Coetzee, and N.J. Beukes. 2004. Dating the rise of atmospheric oxygen. Nature 427(6970): 117–120. https://doi.org/10.1038/nature02260.
Article
Google Scholar
Bekker, A., J.F. Slack, N.J. Planavsky, B. Krapež, A. Hofmann, K.O. Konhauser, and O.J. Rouxel. 2010. Iron formation: A sedimentary product of the complex interplay among mantle, tectonic, and biospheric processes. Economic Geology 150(3): 467–508. https://doi.org/10.2113/gsecongeo.105.3.467.
Article
Google Scholar
Bekker, A., N. Planavsky, B. Rasmussen, B. Krapez, A. Hofmann, J.F. Slack, O.J. Rouxel, and K.O. Konhauser. 2014. Iron formations: Their origin and implications for ancient seawater chemistry. Treatise of Geochemistry 9: 561–628. https://doi.org/10.1016/B978-0-08-095975-7.00719-1.
Article
Google Scholar
Beukes, N.J. 1984. Sedimentology of the Kuruman and Griquatown iron-formations, transvaal supergroup, Griqualand West, South Africa. Precambrian Research 24(1): 47–84. https://doi.org/10.1016/0301-9268(84)90069-X.
Article
Google Scholar
Beukes, N.J., and J. Gutzmer. 2008. Origin and paleoenvironmental significance of major iron formations at the Archean-Paleoproterozoic boundary. Reviews in Economic Geology 15: 5–47. https://doi.org/10.5382/Rev.15.01.
Article
Google Scholar
Bjerrum, C.J., and D.E. Canfield. 2002. Ocean productivity before about 1.9 Gyr ago limited by phosphorus adsorption onto iron oxides. Nature 417(6885): 159–162. https://doi.org/10.1038/417159a.
Article
Google Scholar
Braterman, P.S., A.G. Cairns-Smith, and R.W. Sloper. 1983. Photo-oxidation of hydrated Fe2+—significance for banded iron formations. Nature 303(5913): 163–164. https://doi.org/10.1038/303163a0.
Article
Google Scholar
Bruland, K.W. 1980. Oceanographic distributions of cadmium, zinc, nickel, and copper in the North Pacific. Earth and Planetary Science Letters 47(2): 176–198. https://doi.org/10.1016/0012-821X(80)90035-7.
Article
Google Scholar
Bruland, K.W., and M.C. Lohan. 2003. Controls of Trace Metals in Seawater. Treatise of Geochemistry 6: 23–47. https://doi.org/10.1016/B0-08-043751-6/06105-3.
Article
Google Scholar
Bryce, C., N. Blackwell, C. Schmidt, J. Otte, Y.-M. Huang, S. Kleindienst, E. Tomaszewski, M. Schad, V. Warter, C. Peng, et al. 2018. Microbial anaerobic Fe(II) oxidation—Ecology, mechanisms and environmental implications. Environmental Microbiology 20(10): 3462–3483. https://doi.org/10.1111/1462-2920.14328.
Article
Google Scholar
Buick, R. 2008. When did oxygenic photosynthesis evolve? Philosophical Transactions of the Royal Society of London (B: Biological Sciences)
363(1504): 2731–2743. https://doi.org/10.1098/rstb.2008.0041.
Article
Google Scholar
Bullen, T.D., A.F. White, C.W. Childs, D.V. Vivit, and M.S. Schulz. 2001. Demonstration of significant abiotic iron isotope fractionation in nature. Geology 29(8): 699. https://doi.org/10.1130/0091-7613(2001)029%3c0699:DOSAII%3e2.0.CO;2.
Article
Google Scholar
Cairns-Smith, A.G. 1978. Precambrian solution photochemistry, inverse segregation, and banded iron formations. Nature 276(5690): 807–808. https://doi.org/10.1038/276807a0.
Article
Google Scholar
Catling, D.C., and K.J. Zahnle. 2020. The Archean Atmosphere. Science Advances 6(9): 1–16. https://doi.org/10.1089/153110702753621321.
Article
Google Scholar
Chan, C.S., D. Emerson, and G.W. Luther. 2016. The role of microaerophilic Fe-oxidizing micro-organisms in producing banded iron formations. Geobiology 14(5): 509–528. https://doi.org/10.1111/gbi.12192.
Article
Google Scholar
Chi Fru, E., M. Ivarsson, S.P. Kilias, S. Bengtson, V. Belivanova, F. Marone, D. Fortin, C. Broman, and M. Stampanoni. 2013. Fossilized iron bacteria reveal a pathway to the biological origin of banded iron formation. Nature Communications 4: 2050. https://doi.org/10.1038/ncomms3050.
Article
Google Scholar
Cloud, P. 1965. Significance of the Gunflint (Precambrian) Microflora. Science 148: 27–35. https://doi.org/10.1126/science.148.3666.27.
Article
Google Scholar
Cloud, P. 1973. Paleoecological Significance of the Banded Iron-Formation. Economic Geology 68(7): 1135–1143. https://doi.org/10.2113/gsecongeo.68.7.1135.
Article
Google Scholar
Cornell, Rochelle M., and Udo Schwertmann. 2003. The Iron Oxides. Structure, Properties, Reactions, Occurences and Uses, 2nd ed. Weinheim: Wiley-VCH.
Book
Google Scholar
Croal, L.R., C.M. Johnson, B.L. Beard, and D.K. Newman. 2004. Iron isotope fractionation by Fe(II)-oxidizing photoautotrophic bacteria Geochimica et Cosmochimica Acta 68(6): 1227–1242. https://doi.org/10.1016/j.gca.2003.09.011.
Article
Google Scholar
Croal, L.R., Y. Jiao, A. Kappler, and D.K. Newman. 2009. Phototrophic Fe(II) oxidation in an atmosphere of H2: Implications for Archean banded iron formations. Geobiology 7(1): 21–24. https://doi.org/10.1111/j.1472-4669.2008.00185.x.
Article
Google Scholar
Czaja, A.D., C.M. Johnson, E.E. Roden, B.L. Beard, A.R. Voegelin, T.F. Nägler, N.J. Beukes, and M. Wille. 2012. Evidence for free oxygen in the Neoarchean ocean based on coupled iron–molybdenum isotope fractionation. Geochimica et Cosmochimica Acta 86: 118–137. https://doi.org/10.1016/j.gca.2012.03.007.
Article
Google Scholar
Czaja, A.D., C.M. Johnson, B.L. Beard, E.E. Roden, W. Li, and S. Moorbath. 2013. Biological Fe oxidation controlled deposition of banded iron formation in the ca. 3770Ma Isua Supracrustal Belt (West Greenland). Earth and Planetary Science Letters 363: 192–203. https://doi.org/10.1016/j.epsl.2012.12.025.
Article
Google Scholar
Dimroth, E., and J.J. Chauvel. 1973. Petrography of the Sokoman iron formation in part of the central Labrador trough. Geological Society of America Bulletin 84(1): 111–134. https://doi.org/10.1130/0016-7606(1973)84%3C111:POTSIF%3E2.0.CO;2.
Article
Google Scholar
Duda, J.-P., M.J. van Kranendonk, V. Thiel, D. Ionescu, H. Strauss, N. Schäfer, and J. Reitner. 2016. A Rare Glimpse of Paleoarchean Life: Geobiology of an Exceptionally Preserved Microbial Mat Facies from the 3.4 Ga Strelley Pool Formation, Western Australia. PLoS ONE 11(1): e0147629. https://doi.org/10.1371/journal.pone.0147629.
Article
Google Scholar
Duda, J.-P., V. Thiel, T. Bauersachs, H. Mißbach, M. Reinhardt, N. Schäfer, M.J. van Kranendonk, and J. Reitner. 2018. Ideas and perspectives: Hydrothermally driven redistribution and sequestration of early Archaean biomass—the “hydrothermal pump hypothesis.” Biogeosciences 15(5): 1535–1548. https://doi.org/10.5194/bg-15-1535-2018.
Article
Google Scholar
Dzombak, D.A., and F. Morel. 1990. Surface Complexation Modeling. Wiley Interscience. https://doi.org/10.1002/9780470642665.
Article
Google Scholar
Eickhoff, M., M. Obst, C. Schröder, A.P. Hitchcock, T. Tyliszczak, R.E. Martinez, L.J. Robbins, K.O. Konhauser, and A. Kappler. 2014. Nickel partitioning in biogenic and abiogenic ferrihydrite: The influence of silica and implications for ancient environments. Geochimica et Cosmochimica Acta 140: 65–79. https://doi.org/10.1016/j.gca.2014.05.021.
Article
Google Scholar
Eigenbrode, J.L., and K.H. Freeman. 2006. Late Archean rise of aerobic microbial ecosystems. Proceedings of the National Academy of Sciences of the United States of America 103(43): 15759–15764. https://doi.org/10.1073/pnas.0607540103.
Article
Google Scholar
Ernst, D.M., and M. Bau. 2021. Banded iron formation from Antarctica: The 2.5 Ga old Mt. Ruker BIF and the antiquity of lanthanide tetrad effect and super-chondritic Y/Ho ratio in seawater. Gondwana Research. https://doi.org/10.1016/j.gr.2020.11.011.
Article
Google Scholar
Farquhar, J., A.L. Zerkle, and A. Bekker. 2011. Geological constraints on the origin of oxygenic photosynthesis. Photosynthesis Research 107(1): 11–36. https://doi.org/10.1007/s11120-010-9594-0.
Article
Google Scholar
Feely, R.A., J.H. Trefry, G.J. Massoth, and S. Metz. 1990. A comparison of the scavenging of phosphorus and arsenic from seawater by hydrothermal iron oxyhydroxides in the Atlantic and Pacific Oceans. Deep-Sea Research 38(6): 617–623. https://doi.org/10.1016/0198-0149(91)90001-V.
Article
Google Scholar
Feely, R.A., J.H. Trefry, G.T. Lebon, and G.R. German. 1998. The Relationship between P/Fe and V/Fe Ratios in Hydrothermal Precipitates and Dissolved Phosphate in Seawater. Geophysical Research Letters 25(13): 2253–2256. https://doi.org/10.1029/98GL01546.
Article
Google Scholar
Fischer, W.W., S. Schroeder, J.P. Lacassie, N.J. Beukes, T. Goldberg, H. Strauss, U.E. Horstmann, D.P. Schrag, and A.H. Knoll. 2009. Isotopic constraints on the Late Archean carbon cycle from the Transvaal Supergroup along the western margin of the Kaapvaal Craton, South Africa. Precambrian Research 169(1–4): 15–27. https://doi.org/10.1016/j.precamres.2008.10.010.
Article
Google Scholar
Garrels, R.M., E.A. Perry Jr., and F.T. MacKenzie. 1973. Genesis of Precambrian Iron-Formations and the Development of Atmospheric Oxygen. Economic Geology 68(7): 1173–1179. https://doi.org/10.2113/gsecongeo.68.7.1173.
Article
Google Scholar
Gole, M.J., and C. Klein. 1981. Banded Iron-Formations through Much of Precambrian Time. The Journal of Geology 89(2): 169–183. https://doi.org/10.1086/628578.
Article
Google Scholar
Halama, M., E.D. Swanner, K.O. Konhauser, and A. Kappler. 2016. Evaluation of siderite and magnetite formation in BIFs by pressure–temperature experiments of Fe(III) minerals and microbial biomass. Earth and Planetary Science Letters 450: 243–253. https://doi.org/10.1016/j.epsl.2016.06.032.
Article
Google Scholar
Halevy, I., M. Aleksker, E.M. Schuster, R. Popovitz-Biro, and Y. Feldman. 2017. A key role for green rust in the Precambrian oceans and the genesis of iron formations. Nature Geoscience 10: 135–139. https://doi.org/10.1038/ngeo2878.
Article
Google Scholar
Hamade, T., K.O. Konhauser, R. Raiswell, S. Goldsmith, and R.C. Morris. 2003. Using Ge/Si ratios to decouple iron and silica fluxes in Precambrian banded iron formations. Geology 31(1): 35. https://doi.org/10.1130/0091-7613(2003)031%3c0035:UGSRTD%3e2.0.CO;2.
Article
Google Scholar
Han, T.-M. 1966. Textural relations of hematite and magnetite in some Precambrian metamorphosed oxide iron-formations. Economic Geology 61: 1306–1310.
Google Scholar
Han, T.-M. 1978. Microstructures of magnetite as guides to its origin in some Precambrian iron-formations. Fortschritte in der Mineralogie 56(1): 105–142.
Google Scholar
Han, X., E.J. Tomaszewski, J. Sorwat, Y. Pan, A. Kappler, and J.M. Byrne. 2020. Effect of Microbial Biomass and Humic Acids on Abiotic and Biotic Magnetite Formation. Environmental Science & Technology 54(7): 4121–4130. https://doi.org/10.1021/acs.est.9b07095.
Article
Google Scholar
Harder, H. 1976. Nontronite synthesis at low temperatures. Chemical Geology 18(3): 169–180. https://doi.org/10.1016/0009-2541(76)90001-2.
Article
Google Scholar
Harder, H. 1978. Synthesis of Iron Layer Silicate Minerals under Natural Conditions. Clays and Clay Minerals 26(1): 65–72. https://doi.org/10.1346/CCMN.1978.0260108.
Article
Google Scholar
Hardisty, D.S., Z. Lu, N.J. Planavsky, A. Bekker, P. Philippot, X. Zhou, and T.W. Lyons. 2014. An iodine record of Paleoproterozoic surface ocean oxygenation. Geology 42(7): 619–622. https://doi.org/10.1130/G35439.1.
Article
Google Scholar
Hartman, H. 1984. The evolution of photosynthesis and microbial mats: a speculation on banded iron formations. In Microbial Mats: Stromatolites, eds. Y. Cohen, and R.W. Castenholz, 451–453. New York: Alan Liss.
Google Scholar
Hausinger, R.P. 1987. Nickel Utilization by Microorganisms. Microbiological Reviews 51(1): 22–42.
Article
Google Scholar
Hayes, W.J. 1965. Review of the metabolism of chlorinated hydrocarbon insectides especially in mammals. Annual Review of Pharmacology 5: 27–52. https://doi.org/10.1146/annurev.pa.05.040165.000331.
Article
Google Scholar
Hayes, J.M. 1983. Geochemical evidence bearing on the origin of aerobiosis, a speculative hypothesis. In Earth’s Earliest Biosphere, Its Origins and Evolution, ed. J.W. Schopf, 291–301. Princeton: Princeton University Press.
Google Scholar
Heard, A.W., N. Dauphas, R. Guilbaud, O.J. Rouxel, I.B. Butler, N.X. Nie, and A. Bekker. 2020. Triple iron isotope constraints on the role of ocean iron sinks in early atmospheric oxygenation. Science 370: 446–449. https://doi.org/10.1126/science.aaz8821.
Article
Google Scholar
Heimann, A., C.M. Johnson, B.L. Beard, J.W. Valley, E.E. Roden, M.J. Spicuzza, and N.J. Beukes. 2010. Fe, C, and O isotope compositions of banded iron formation carbonates demonstrate a major role for dissimilatory iron reduction in ~ 2.5Ga marine environments. Earth and Planetary Science Letters 294(1–2): 8–18. https://doi.org/10.1016/j.epsl.2010.02.015.
Article
Google Scholar
Holland, H.D. 1973. The oceans: A possible source of iron in iron-formations. Economic Geology 68: 1169–1172. https://doi.org/10.2113/gsecongeo.68.7.1169.
Article
Google Scholar
Holland, H.D. 2002. Volcanic gases, black smokers, and the great oxidation event. Geochimica et Cosmochimica Acta 66(21): 3811–3826. https://doi.org/10.1016/S0016-7037(02)00950-X.
Article
Google Scholar
Holm, N.G. 1989. The 13C/12C ratios of siderite and organic matter of a modern metalliferous hydrothermal sediment and their implications for banded iron formations. Chemical Geology 77: 41–45. https://doi.org/10.1016/0009-2541(89)90013-2.
Article
Google Scholar
Isley, A.E. 1995. Hydrothermal Plumes and the Delivery of Iron to Banded Iron Formation. The University of Chicago Press Journals 103(2): 169–185.
Google Scholar
Isley, A.E., and D.H. Abbott. 1999. Plume related mafic volcanism and the deposition of banded iron formation. Journal of Geophysical Research 104(7): 15461–15477. https://doi.org/10.1029/1999JB900066.
Article
Google Scholar
Jacobsen, S.B., and M.R. Pimentel-Klose. 1988. A Nd isotopic study of the Hamersley and Michipicoten banded iron formations: The source of REE and Fe in Archean oceans. Earth and Planetary Science Letters 87(1–2): 29–44. https://doi.org/10.1016/0012-821X(88)90062-3.
Article
Google Scholar
Johnson, C.M., and B.L. Brian. 2005. Biogeochemical Cycling of Iron Isotopes. Science 309: 1025–1027. https://doi.org/10.1126/science.1112552.
Article
Google Scholar
Johnson, C.M., B.L. Beard, N.J. Beukes, C. Klein, and J.M. O’Leary. 2003. Ancient geochemical cycling in the Earth as inferred from Fe isotope studies of banded iron formations from the Transvaal Craton. Contributions to Mineralogy and Petrology 144(5): 523–547. https://doi.org/10.1007/s00410-002-0418-x.
Article
Google Scholar
Johnson, C.M., B.L. Beard, E.E. Roden, D.K. Newman, and K.H. Nealson. 2004. Isotopic Constraints on Biogeochemical Cycling of Fe. Reviews in Mineralogy and Geochemistry 55(1): 359–408. https://doi.org/10.2138/gsrmg.55.1.359.
Article
Google Scholar
Johnson, C.M., B.L. Beard, C. Klein, N.J. Beukes, and E.E. Roden. 2008. Iron isotopes constrain biologic and abiologic processes in banded iron formation genesis. Geochimica et Cosmochimica Acta 72(1): 151–169. https://doi.org/10.1016/j.gca.2007.10.013.
Article
Google Scholar
Johnson, J.E., J.R. Muhling, J. Cosmidis, B. Rasmussen, and A.S. Templeton. 2018. Low-Fe(III) Greenalite Was a Primary Mineral From Neoarchean Oceans. Geophysical Research Letters 45(7): 3182–3192. https://doi.org/10.1002/2017GL076311.
Article
Google Scholar
Johnson, C., B. Beard, and S. Weyer. 2020. In The Ancient Earth. In Iron Geochemistry: An Isotopic Perspective, eds. C. Johnson, B. Beard, and S. Weyer, 215–360. Cham: Springer International Publishing (Advances in Isotope Geochemistry).
Chapter
Google Scholar
Jones, C., S. Nomosatryo, S.A. Crowe, C.J. Bjerrum, and D.E. Canfield. 2015. Iron oxides, divalent cations, silica, and the early earth phosphorus crisis. Geology 43(2): 135–138. https://doi.org/10.1130/G36044.1.
Article
Google Scholar
Kappler, A., C. Pasquero, K.O. Konhauser, and D.K. Newman. 2005. Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria. Geology 33(11): 865–868. https://doi.org/10.1130/G21658.1.
Article
Google Scholar
Kashefi, K., and D.R. Lovley. 2003. Extending the Upper Temperature Limit for Life. Science 301: 934. https://doi.org/10.1126/science.1086823.
Article
Google Scholar
Kasting, J.F. 1992. Models relating to Proterozoic atmosphere and ocean chemistry. In The Proterozoic Biosphere: A Multidisciplinary Study, eds. J.W. Schopf, and C. Klein, 1185–1187. NewYork: Cambridge University Press.
Google Scholar
Kendall, B., T.W. Lyons, A.J. Kaufman, S.W. Poulton, and A.D. Anbar. 2010. Pervasive oxygenation along late Archaean ocean margins. Nature Geoscience 3: 647–652. https://doi.org/10.1038/ngeo942.
Article
Google Scholar
Kida, K., T. Shigematsu, J. Kijima, M. Numaguchi, Y. Mochinaga, N. Abe, and S. Morimura. 2001. Influence of Ni2+ and Co2+ on methanogenic activity and the amounts of coenzymes involved in methanogenesis. Journal of Bioscience and Bioengineering 91(6): 590–595. https://doi.org/10.1016/S1389-1723(01)80179-1.
Article
Google Scholar
Kipp, M.A., and E.E. Stüeken. 2017. Biomass recycling and Earth’s early phosphorus cycle. Science Advances 3(11): eaao4795. https://doi.org/10.1126/sciadv.aao4795.
Article
Google Scholar
Klein, C. 2005. Some Precambrian banded iron-formations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origins. American Mineralogist 90(10): 1473–1499. https://doi.org/10.2138/am.2005.1871.
Article
Google Scholar
Klein, C., and N.J. Beukes. 1992. Time Distribution, Stratigraphy, and Sedimentologic Setting, and Geochemistry of Precambrian Iron-Formations. In The Proterozoic Biosphere: A Multidisciplinary Study, eds. J.W. Schopf, and C. Klein, 139–146. New York: Cambridge University Press.
Google Scholar
Köhler, I., K.O. Konhauser, D. Papineau, A. Bekker, and A. Kappler. 2013. Biological carbon precursor to diagenetic siderite with spherical structures in iron formations. Nature Communications 4(1741): 1–7. https://doi.org/10.1038/ncomms2770.
Article
Google Scholar
Konhauser, K.O. 2011. Chromium enrichment in iron formations record Earth’s first acid rock drainage during the Great Oxidation Event. Nature 478: 369–373.
Article
Google Scholar
Konhauser, K.O., T. Hamade, R. Raiswell, R.C. Morris, G.F. Ferris, G. Southam, and D.E. Canfield. 2002. Could bacteria have formed the Precambrian banded iron formations? Geology 30(12): 1079. https://doi.org/10.1130/0091-7613(2002)030%3c1079:CBHFTP%3e2.0.CO;2.
Article
Google Scholar
Konhauser, K.O., D.K. Newman, and A. Kappler. 2005. The potential significance of microbial Fe(III) reduction during deposition of Precambrian banded iron formations. Geobiology 3: 167–177. https://doi.org/10.1111/j.1472-4669.2005.00055.x.
Article
Google Scholar
Konhauser, K.O., S.V. Lalonde, L. Amskold, and H.D. Holland. 2007. Was there really an Archean phosphate crisis? Science 315(5816): 1234. https://doi.org/10.1126/science.1136328.
Article
Google Scholar
Konhauser, K.O., E. Pecoits, S.V. Lalonde, D. Papineau, E.G. Nisbet, M.E. Barley, N.T. Arndt, K. Zahnle, and B.S. Kamber. 2009. Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event. Nature 458(7239): 750–753. https://doi.org/10.1038/nature07858.
Article
Google Scholar
Konhauser, K.O., L.J. Robbins, E. Pecoits, C. Peacock, A. Kappler, and S.V. Lalonde. 2015. The Archean Nickel Famine Revisited. Astrobiology 15(10): 804–815. https://doi.org/10.1089/ast.2015.1301.
Article
Google Scholar
Konhauser, K.O., N.J. Planavsky, D.S. Hardisty, L.J. Robbins, T.J. Warchola, R. Haugaard, S.V. Lalonde, C.A. Partin, P. Oonk, H. Tsikos, et al. 2017. Iron formations: A global record of Neoarchaean to Palaeoproterozoic environmental history. Earth-Science Reviews 172: 140–177. https://doi.org/10.1016/j.earscirev.2017.06.012.
Article
Google Scholar
Krapež, B., M.E. Barley, and A.L. Pickard. 2003. Hydrothermal and resedimented origins of the precursor sediments to banded iron formation: Sedimentological evidence from the Early Palaeoproterozoic Brockman Supersequence of Western Australia. Sedimentology 50(5): 979–1011. https://doi.org/10.1046/j.1365-3091.2003.00594.x.
Article
Google Scholar
Krissansen-Totton, J., G.N. Arney, and D.C. Catling. 2018. Constraining the climate and ocean pH of the early Earth with a geological carbon cycle model. Proceedings of the National Academy of Sciences of the United States of America 115(16): 4105–4110. https://doi.org/10.1073/pnas.1721296115.
Article
Google Scholar
Kukkadapu, R.K., J.M. Zachara, J.K. Fredrickson, and D.W. Kennedy. 2004. Biotransformation of two-line silica-ferrihydrite by a dissimilatory Fe(III)-reducing bacterium: Formation of carbonate green rust in the presence of phosphate. Geochimica et Cosmochimica Acta 68(13): 2799–2814. https://doi.org/10.1016/j.gca.2003.12.024.
Article
Google Scholar
Laakso, T.A., and D.P. Schrag. 2018. Limitations on Limitation. Global Biogeochemical Cycles 32(3): 486–496. https://doi.org/10.1002/2017GB005832.
Article
Google Scholar
Laufer, K., M. Nordhoff, H. Røy, C. Schmidt, S. Behrens, B.B. Jørgensen, and A. Kappler. 2016. Coexistence of Microaerophilic, Nitrate-Reducing, and Phototrophic Fe(II) Oxidizers and Fe(III) Reducers in Coastal Marine Sediment. Applied and Environmental Microbiology 82(5): 1433–1447. https://doi.org/10.1128/AEM.03527-15.
Article
Google Scholar
Laufer, K., A. Niemeyer, V. Nikeleit, M. Halama, J.M. Byrne, and A. Kappler. 2017. Physiological characterization of a halotolerant anoxygenic phototrophic Fe(II)-oxidizing green-sulfur bacterium isolated from a marine sediment. FEMS Microbiology Ecology. https://doi.org/10.1093/femsec/fix054.
Article
Google Scholar
Li, Y., K.O. Konhauser, D.R. Cole, and T.J. Phelps. 2011. Mineral ecophysiological data provide growing evidence for microbial activity in banded-iron formations. Geological Society of America Bulletin 39(8): 707–710. https://doi.org/10.1130/G32003.1.
Article
Google Scholar
Li, Y.-L., K.O. Konhauser, A. Kappler, and X.-L. Hao. 2013. Experimental low-grade alteration of biogenic magnetite indicates microbial involvement in generation of banded iron formations. Earth and Planetary Science Letters 361: 229–237. https://doi.org/10.1016/j.epsl.2012.10.025.
Article
Google Scholar
Liu, H., K.O. Konhauser, L.J. Robbins, and W. Sun. 2021. Global continental volcanism controlled the evolution of the oceanic nickel reservoir. Earth and Planetary Science Letters 572: 117116. https://doi.org/10.1016/j.epsl.2021.117116.
Article
Google Scholar
Lyons, T.W., C.T. Reinhard, and N.J. Planavsky. 2014. The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506(7488): 307–315. https://doi.org/10.1038/nature13068.
Article
Google Scholar
Maliva, R.G., A.H. Knoll, and B.M. Simonson. 2005. Secular change in the Precambrian silica cycle: Insights from chert petrology. Geological Society of America Bulletin 117(7–8): 835–845. https://doi.org/10.1130/B25555.1.
Article
Google Scholar
McKirdy, D.M., and T.G. Powell. 1974. Metamorphic Alteration of Carbon Isotopic Composition in Ancient Sedimentary Organic Matter: New Evidence from Australia and South Africa. Geology 2(12): 591–595. https://doi.org/10.1130/0091-7613(1974)2%3c591.
Article
Google Scholar
Mißbach, H., J.-P. Duda, A.M. van den Kerkhof, V. Lüders, A. Pack, J. Reitner, and V. Thiel. 2021. Ingredients for microbial life preserved in 3.5 billion-year-old fluid inclusions. Nature Communications 12(1): 1101. https://doi.org/10.1038/s41467-021-21323-z.
Article
Google Scholar
Mloszewska, A.M., D.B. Cole, N.J. Planavsky, A. Kappler, D.S. Whitford, G.W. Owttrim, and K.O. Konhauser. 2018. UV radiation limited the expansion of cyanobacteria in early marine photic environments. Nature Communications 9 (1): 3088. https://doi.org/10.1038/s41467-018-05520-x.
Article
Google Scholar
Moon, E.M., and C.L. Peacock. 2012. Adsorption of Cu(II) to ferrihydrite and ferrihydrite–bacteria composites: Importance of the carboxyl group for Cu mobility in natural environments. Geochimica et Cosmochimica Acta 92: 203–219. https://doi.org/10.1016/j.gca.2012.06.012.
Article
Google Scholar
Morris, R.C. 1993. Genetic modelling for banded iron-formation of the Hamersley Group, Pilbara Craton, Western Australia. Precambrian Research 60(1–4): 243–286. https://doi.org/10.1016/0301-9268(93)90051-3.
Article
Google Scholar
Morris, R.C., and R.C. Horwitz. 1983. The origin of the iron-formation-rich Hamersley Group of Western Australia—deposition on a platform. Precambrian Research 21(3–4): 273–297. https://doi.org/10.1016/0301-9268(83)90044-X.
Article
Google Scholar
Nie, N.X., N. Dauphas, and R.C. Greenwood. 2017. Iron and oxygen isotope fractionation during iron UV photo-oxidation: Implications for early Earth and Mars. Earth and Planetary Science Letters 458: 179–191. https://doi.org/10.1016/j.epsl.2016.10.035.
Article
Google Scholar
Olson, S.L., L.R. Kump, and J.F. Kasting. 2013. Quantifying the areal extent and dissolved oxygen concentrations of Archean oxygen oases. Chemical Geology 362: 35–43. https://doi.org/10.1016/j.chemgeo.2013.08.012.
Article
Google Scholar
Oshiki, M., S. Ishii, K. Yoshida, N. Fujii, M. Ishiguro, H. Satoh, and S. Okabe. 2013. Nitrate-dependent ferrous iron oxidation by anaerobic ammonium oxidation (anammox) bacteria. Applied and Environmental Microbiology 79(13): 4087–4093. https://doi.org/10.1128/AEM.00743-13.
Article
Google Scholar
Papineau, D., R. Purohit, M.L. Fogel, and G.A. Shields-Zhou. 2013. High phosphate availability as a possible cause for massive cyanobacterial production of oxygen in the Paleoproterozoic atmosphere. Earth and Planetary Science Letters 362: 225–236. https://doi.org/10.1016/j.epsl.2012.11.050.
Article
Google Scholar
Pavlov, A.A., and J.F. Kasting. 2002. Mass-Independent Fractionation of Sulfur Isotopes in Archean Sediments: Strong Evidence for an Anoxic Archean Atmosphere. Astrobiology 2(1): 27–41. https://doi.org/10.1089/153110702753621321.
Article
Google Scholar
Pecoits, E., M.K. Gingras, M.E. Barley, A. Kappler, N.R. Posth, and K.O. Konhauser. 2009. Petrography and geochemistry of the Dales Gorge banded iron formation: Paragenetic sequence, source and implications for palaeo-ocean chemistry. Precambrian Research 172(1–2): 163–187. https://doi.org/10.1016/j.precamres.2009.03.014.
Article
Google Scholar
Percak-Dennett, E.M., B.L. Beard, H. Xu, H. Konishi, C.M. Johnson, and E.E. Roden. 2011. Iron isotope fractionation during microbial dissimilatory iron oxide reduction in simulated Archaean seawater. Geobiology 9(3): 205–220. https://doi.org/10.1111/j.1472-4669.2011.00277.x.
Article
Google Scholar
Perry, E.C., F.C. Tan, and G.B. Morey. 1973. Geology and stable isotope geochemistry of the Biwabik Iron Formation. Economic Geology 68(7): 1110–1125. https://doi.org/10.2113/gsecongeo.68.7.1110.
Article
Google Scholar
Planavsky, N., O. Rouxel, A. Bekker, R. Shapiro, P. Fralick, and A. Knudsen. 2009. Iron-oxidizing microbial ecosystems thrived in late Paleoproterozoic redox-stratified oceans. Earth and Planetary Science Letters 286(1–2): 230–242. https://doi.org/10.1016/j.epsl.2009.06.033.
Article
Google Scholar
Planavsky, N.J., O.J. Rouxel, A. Bekker, S.V. Lalonde, K.O. Konhauser, C.T. Reinhard, and T.W. Lyons. 2010. The evolution of the marine phosphate reservoir. Nature 467(7319): 1088–1090. https://doi.org/10.1038/nature09485.
Article
Google Scholar
Planavsky, N.J., A. Bekker, A. Hofmann, J.D. Owens, and T.W. Lyons. 2012. Sulfur record of rising and falling marine oxygen and sulfate levels during the Lomagundi event. Proceedings of the National Academy of Sciences of the United States of America 109(45): 18300–18305. https://doi.org/10.1073/pnas.1120387109.
Article
Google Scholar
Posth, N.R., S. Huelin, K.O. Konhauser, and A. Kappler. 2010. Size, density and composition of cell–mineral aggregates formed during anoxygenic phototrophic Fe(II) oxidation: Impact on modern and ancient environments. Geochimica et Cosmochimica Acta 74(12): 3476–3493. https://doi.org/10.1016/j.gca.2010.02.036.
Article
Google Scholar
Posth, N.R., K.O. Konhauser, and A. Kappler. 2013. Microbiological processes in banded iron formation deposition. Sedimentology 60(7): 1733–1754. https://doi.org/10.1111/sed.12051.
Article
Google Scholar
Posth, N.R., D.E. Canfield, and A. Kappler. 2014. Biogenic Fe(III) minerals: From formation to diagenesis and preservation in the rock record. Earth-Science Reviews 135: 103–121. https://doi.org/10.1016/j.earscirev.2014.03.012.
Article
Google Scholar
Rasmussen, B., and J.R. Muhling. 2018. Making magnetite late again: Evidence for widespread magnetite growth by thermal decomposition of siderite in Hamersley banded iron formations. Precambrian Research 306: 64–93. https://doi.org/10.1016/j.precamres.2017.12.017.
Article
Google Scholar
Rasmussen, B., D.B. Meier, B. Krapež, and J.R. Muhling. 2013. Iron silicate microgranules as precursor sediments to 2.5-billion-year-old banded iron formations. Geology 41(4): 435–438. https://doi.org/10.1130/G33828.1.
Article
Google Scholar
Rasmussen, B., B. Krapez, and D.B. Meier. 2014. Replacement origin for hematite in 2.5 Ga banded iron formation: Evidence for postdepositional oxidation of iron-bearing minerals. Geological Society of America Bulletin 126(3–4): 438–446. https://doi.org/10.1130/B30944.1.
Article
Google Scholar
Rasmussen, B., B. Krapež, and J.R. Muhling. 2015a. Seafloor silicification and hardground development during deposition of 2.5 Ga banded iron formations. Geology 43(3): 235–238. https://doi.org/10.1130/G36363.1.
Article
Google Scholar
Rasmussen, B., B. Krapež, J.R. Muhling, and A. Suvorova. 2015b. Precipitation of iron silicate nanoparticles in early Precambrian oceans marks Earth’s first iron age. Geology 43(4): 303–306. https://doi.org/10.1130/G36309.1.
Article
Google Scholar
Rasmussen, B., J.R. Muhling, A. Suvorova, and B. Krapež. 2017. Greenalite precipitation linked to the deposition of banded iron formations downslope from a late Archean carbonate platform. Precambrian Research 290: 49–62. https://doi.org/10.1016/j.precamres.2016.12.005.
Article
Google Scholar
Rasmussen, B., J.R. Muhling, and W.W. Fischer. 2019a. Evidence from laminated chert in banded iron formations for deposition by gravitational settling of iron-silicate muds. Geology 47(2): 167–170. https://doi.org/10.1130/G45560.1.
Article
Google Scholar
Rasmussen, B., J.R. Muhling, N.J. Tosca, and H. Tsikos. 2019b. Evidence for anoxic shallow oceans at 2.45 Ga: Implications for the rise of oxygenic photosynthesis. Geology 47(7): 622–626. https://doi.org/10.1130/G46162.1.
Article
Google Scholar
Rasmussen, B., J.R. Muhling, A. Suvorova, and W.W. Fischer. 2021. Apatite nanoparticles in 3.46–2.46 Ga iron formations: Evidence for phosphorus-rich hydrothermal plumes on early Earth. Geology. https://doi.org/10.1130/G48374.1.
Article
Google Scholar
Reddy, T.R., X. Zheng, E.E. Roden, B.L. Beard, and C.M. Johnson. 2016. Silicon isotope fractionation during microbial reduction of Fe(III)–Si gels under Archean seawater conditions and implications for iron formation genesis. Geochimica et Cosmochimica Acta 190: 85–99. https://doi.org/10.1016/j.gca.2016.06.035.
Article
Google Scholar
Robbins, L.J., E.D. Swanner, S.V. Lalonde, M. Eickhoff, M.L. Paranich, C.T. Reinhard, C.L. Peacock, A. Kappler, and K.O. Konhauser. 2015. Limited Zn and Ni mobility during simulated iron formation diagenesis. Chemical Geology 402: 30–39. https://doi.org/10.1016/j.chemgeo.2015.02.037.
Article
Google Scholar
Robbins, L.J., S.V. Lalonde, N.J. Planavsky, C.A. Partin, C.T. Reinhard, B. Kendall, C. Scott, D.S. Hardisty, B.C. Gill, D.S. Alessi, et al. 2016. Trace elements at the intersection of marine biological and geochemical evolution. Earth-Science Reviews 163: 323–348. https://doi.org/10.1016/j.earscirev.2016.10.013.
Article
Google Scholar
Robbins, L.J., S.P. Funk, S.L. Flynn, T.J. Warchola, Z. Li, S.V. Lalonde, B.J. Rostron, A.B. Smith, N.J. Beukes, M.O. de Knock, et al. 2019. Hydrogeological constraints on the formation of Palaeoproterozoic banded iron formations. Nature Geoscience 17(12): 558–563. https://doi.org/10.1038/s41561-019-0372-0.
Article
Google Scholar
Roden, E.E., and J.W. Edmonds. 1997. Phosphate mobilization in iron-rich anaerobic sediments: Microbial Fe(III)oxide reduction versus iron-sulfide formation. Archiv für Hydrobiologie 193(3): 347–378. https://doi.org/10.1127/archiv-hydrobiol/139/1997/347.
Article
Google Scholar
Rye, R., and H.D. Holland. 1998. Paleosols and the evolution of atmospheric oxygen: A critical review. American Journal of Science 298: 621–672. https://doi.org/10.2475/ajs.298.8.621.
Article
Google Scholar
Saito, M.A., D.M. Sigman, and F.M.M. Morel. 2003. The bioinorganic chemistry of the ancient ocean: The co-evolution of cyanobacterial metal requirements and biogeochemical cycles at the Archean-Proterozoic boundary? Inorganica Chimica Acta 356: 308–318. https://doi.org/10.1016/S0020-1693(03)00442-0.
Article
Google Scholar
Schidlowski, M. 2001. Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: evolution of a concept. Precambrian Research 106(1–2): 117–134. https://doi.org/10.1016/S0301-9268(00)00128-5.
Article
Google Scholar
Schirrmeister, B.E., P. Sanchez-Baracaldo, and D. Wacey. 2016. Cyanobacterial evolution during the Precambrian. International Journal of Astrobiology 15(3): 187–204. https://doi.org/10.1017/S1473550415000579.
Article
Google Scholar
Schönheit, P., J. Moll, and R.K. Thauer. 1979. Nickel, cobalt, and molybdenum requirement for growth of Methanobacterium thermoautotrophicum. Archives of Microbiology 123(1): 105–107. https://doi.org/10.1007/BF00403508.
Article
Google Scholar
Schad, M., M. Halama, L.J. Robbins, T.J. Warchola, J. Tejada, R. Kirchhof, S.V. Lalonde, E.D. Swanner, N.J. Planavsky, H. Thorwarth, M. Mansor, K.O. Konhauser, and A. Kappler. 2021. Phosphate remobilization from banded iron formations during metamorphic mineral transformations. Chemical Geology 584: 120489. https://doi.org/10.1016/j.chemgeo.2021.120489.
Article
Google Scholar
Sergent, A.-S., F. Jorand, and K. Hanna. 2011. Effects of Si-bearing minerals on the nature of secondary iron mineral products from lepidocrocite bioreduction. Chemical Geology 289(1–2): 86–97. https://doi.org/10.1016/j.chemgeo.2011.07.016.
Article
Google Scholar
Shimizu, M., J. Zhou, C. Schröder, M. Obst, A. Kappler, and T. Borch. 2013. Dissimilatory reduction and transformation of ferrihydrite-humic acid coprecipitates. Environmental Science & Technology 47(23): 13375–13384. https://doi.org/10.1021/es402812j.
Article
Google Scholar
Siever, R. 1992. The silica cycle in the Precambrian. Geochimica et Cosmochimica Acta 56(8): 3265–3272. https://doi.org/10.1016/0016-7037(92)90303-Z.
Article
Google Scholar
Steinhoefel, G., F. von Blanckenburg, I. Horn, K.O. Konhauser, N.J. Beukes, and J. Gutzmer. 2010. Deciphering formation processes of banded iron formations from the Transvaal and the Hamersley successions by combined Si and Fe isotope analysis using UV femtosecond laser ablation. Geochimica et Cosmochimica Acta 74(9): 2677–2696. https://doi.org/10.1016/j.gca.2010.01.028.
Article
Google Scholar
Strous, M., and M.S.M. Jetten. 2004. Anaerobic oxidation of methane and ammonium. Annual Review of Microbiology 58: 99–117. https://doi.org/10.1146/annurev.micro.58.030603.123605.
Article
Google Scholar
Sun, S., K.O. Konhauser, A. Kappler, and Y.-L. Li. 2015. Primary hematite in Neoarchean to Paleoproterozoic oceans. Geological Society of America Bulletin 127(5–6): 850–861. https://doi.org/10.1130/B31122.1.
Article
Google Scholar
Sundman, A., T. Karlsson, S. Sjöberg, and P. Persson. 2016. Impact of iron–organic matter complexes on aqueous phosphate concentrations. Chemical Geology 426: 109–117. https://doi.org/10.1016/j.chemgeo.2016.02.008.
Article
Google Scholar
Swanner, E.D., A.M. Mloszewska, O.A. Cirpa, R. Schoenberg, K.O. Konhauser, and A. Kappler. 2015a. Modulation of oxygen production in Archean oceans by episodes of Fe(II) toxicity. Nature Geoscience 8(2): 126–130. https://doi.org/10.1038/ngeo2327.
Article
Google Scholar
Swanner, E.D., W. Wu, L. Hao, M.L. Wüstner, M. Obst, D.M. Moran, M.R. McIlvin, M.A. Saito, and A. Kappler. 2015b. Physiology, Fe(II) oxidation, and Fe mineral formation by a marine planktonic cyanobacterium grown under ferruginous conditions. Frontiers in Earth Science. https://doi.org/10.3389/feart.2015.00060.
Article
Google Scholar
Swanner, E.D., W. Wu, L. Hao, M.L. Wüstner, M. Obst, D.M. Moran, M.R. McIlvin, M.A. Saito, and A. Kappler. 2015c. Physiology, Fe(II) oxidation, and Fe mineral formation by a marine planktonic cyanobacterium growth under ferruginous conditions. Frontiers in Earth Science 3: 60.
Article
Google Scholar
Teixeira, N.L., F.A. Caxito, C.A. Rosière, E. Pecoits, L. Vieira, R. Frei, A.N. Sial, and F. Poitrasson. 2017. Trace elements and isotope geochemistry (C, O, Fe, Cr) of the Cauê iron formation, Quadrilátero Ferrífero, Brazil: Evidence for widespread microbial dissimilatory iron reduction at the Archean/Paleoproterozoic transition. Precambrian Research 298: 39–55. https://doi.org/10.1016/j.precamres.2017.05.009.
Article
Google Scholar
ThomasArrigo, L.K., J.M. Byrne, A. Kappler, and R. Kretzschmar. 2018. Impact of Organic Matter on Iron(II)-Catalyzed Mineral Transformations in Ferrihydrite-Organic Matter Coprecipitates. Environmental Science & Technology 52(21): 12316–12326. https://doi.org/10.1021/acs.est.8b03206.
Article
Google Scholar
Thompson, K.J., P.A. Kenward, K.W. Bauer, T. Warchola, T. Gauger, R. Martinez, R.L. Simister, C.C. Michiels, M. Llirós, C.T. Reinhard, et al. 2019. Photoferrotrophy, deposition of banded iron formations, and methane production in Archean oceans. Science Advances 5(11): eaav2869. https://doi.org/10.1126/sciadv.aav2869.
Article
Google Scholar
Tice, M.M., and D.R. Lowe. 2004. Photosynthetic microbial mats in the 3,416-Myr-old ocean. Nature 431: 549–552. https://doi.org/10.1038/nature02888.
Article
Google Scholar
Tosca, N.J., S. Guggenheim, and P.K. Pufahl. 2016. An authigenic origin for Precambrian greenalite: Implications for iron formation and the chemistry of ancient seawater. Bulletin 128(3–4): 511–530. https://doi.org/10.1130/B31339.1.
Article
Google Scholar
Trendall, A.F. 2002. The significance of iron-formation in the Precambrian stratigraphic record. Special Publications International Association of Sedimentologists 33: 33–66. https://doi.org/10.1002/9781444304312.ch3.
Article
Google Scholar
Trendall, A.F., and J.G. Blockley. 1970. The iron formations of the Precambrian Hamersley Group, Western Australia with special reference to the associated crocidolite. Geological Survey of Western Australia 119: 336.
Google Scholar
Tyrrell, T. 1999. The relative influences of nitrogen and phosphorus on oceanic primary production. Nature 400(6744): 525–531. https://doi.org/10.1038/22941.
Article
Google Scholar
Kranendonk, M.J. van. 2006. Volcanic degassing, hydrothermal circulation and the flourishing of early life on Earth: A review of the evidence from c. 3490–3240 Ma rocks of the Pilbara Supergroup, Pilbara Craton, Western Australia. Earth-Science Reviews 74(3–4): 197–240. https://doi.org/10.1016/j.earscirev.2005.09.005.
Article
Google Scholar
Wacey, D., N. McLoughlin, O.R. Green, J. Parnell, C.A. Stoakes, and M.D. Brasier. 2006. The ~ 3.4 billion-year-old Strelley Pool Sandstone: a new window into early life on Earth. International Journal of Astrobiology 5(4): 333–342. https://doi.org/10.1017/S1473550406003466.
Article
Google Scholar
Walker, J.C.G. 1984. Suboxic diagenesis in banded iron formations. Nature 309(5966): 340–342. https://doi.org/10.1038/309340a0.
Article
Google Scholar
Weber, K.A., J. Pollock, K.A. Cole, S.M. O’Connor, L.A. Achenbach, and J.D. Coates. 2006. Anaerobic nitrate-dependent iron(II) bio-oxidation by a novel lithoautotrophic betaproteobacterium, strain 2002. Applied and Environmental Microbiology 72(1): 686–694. https://doi.org/10.1128/AEM.72.1.686-694.2006.
Article
Google Scholar
Widdel, F., S. Schnell, S. Helsing, A. Ehrenreich, B. Assmus, and B. Schink. 1993. Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature 362: 834–836. https://doi.org/10.1038/362834a0.
Article
Google Scholar
Woese, C.R. 1987. Bacterial Evolution. Microbiological Reviews 51(2): 221–271.
Article
Google Scholar
Wu, L., E.M. Percak-Dennett, B.L. Beard, E.E. Roden, and C.M. Johnson. 2012. Stable iron isotope fractionation between aqueous Fe(II) and model Archean ocean Fe–Si coprecipitates and implications for iron isotope variations in the ancient rock record. Geochimica et Cosmochimica Acta 84: 14–28. https://doi.org/10.1016/j.gca.2012.01.007.
Article
Google Scholar
Wu, W., E.D. Swanner, L. Hao, F. Zeitvogel, M. Obst, Y. Pan, and A. Kappler. 2014. Characterization of the physiology and cell-mineral interactions of the marine anoxygenic phototrophic Fe(II) oxidizer Rhodovulum iodosum–implications for Precambrian Fe(II) oxidation. FEMS Microbiology Ecology 88(3): 503–515. https://doi.org/10.1111/1574-6941.12315.
Article
Google Scholar
Xiong, J. 2006. Photosynthesis: What color was its origin? Biology 7(245): 1–5. https://doi.org/10.1186/gb-2006-7-12-245.
Article
Google Scholar
Yamaguchi, K.E., C.M. Johnson, B.L. Beard, and H. Ohmoto. 2005. Biogeochemical cycling of iron in the Archean-Paleoproterozoic Earth: Constraints from iron isotope variations in sedimentary rocks from the Kaapvaal and Pilbara Cratons. Chemical Geology 218(1–2): 135–169. https://doi.org/10.1016/j.chemgeo.2005.01.020.
Article
Google Scholar
Yan, J., T. Jiang, Y. Yao, S. Lu, Q. Wang, and S. Wei. 2016. Preliminary investigation of phosphorus adsorption onto two types of iron oxide-organic matter complexes. Journal of Environmental Sciences 42: 152–162. https://doi.org/10.1016/j.jes.2015.08.008.
Article
Google Scholar
Zachara, J.M., R.K. Kukkadapu, J.K. Fredrickson, Y.A. Gorby, and S.C. Smith. 2002. Biomineralization of poory crystalline Fe(III) oxides by dissimilatory metal reducing bacteria (DMRB). Geomicrobiology Journal 19(2): 179–207. https://doi.org/10.1080/01490450252864271.
Article
Google Scholar
Zahnle, K., M. Claire, and D.C. Catling. 2006. The loss of mass-independent fractionation in sulfur due to a Palaeoproterozoic collapse of atmospheric methane. Geobiology 4(4): 271–283. https://doi.org/10.1111/j.1472-4669.2006.00085.x.
Article
Google Scholar
Zegeye, A., S. Bonneville, L.G. Benning, A. Sturm, D.A. Fowle, C. Jones, D.E. Canfield, C. Ruby, L.C. MacLean, S. Nomosatryo, et al. 2012. Green rust formation controls nutrient availability in a ferruginous water column. Geology 40(7): 599–602. https://doi.org/10.1130/G32959.1.
Article
Google Scholar
Zerkle, A.L. 2005. Biogeochemical signatures through time as inferred from whole microbial genomes. American Journal of Science 305(6–8): 467–502. https://doi.org/10.2475/ajs.305.6-8.467.
Article
Google Scholar
Zhou, Z., D.E. Latta, N. Noor, A. Thompson, T. Borch, and M.M. Scherer. 2018. Fe(II)-Catalyzed Transformation of Organic Matter-Ferrihydrite Coprecipitates: A Closer Look Using Fe Isotopes. Environmental Science & Technology 52(19): 11142–11150. https://doi.org/10.1021/acs.est.8b03407.
Article
Google Scholar