Agić, H., M. Moczydłowska, and L. Yin. 2017. Diversity of organic-walled microfossils from the early Mesoproterozoic Ruyang Group, North China Craton—a window into the early eukaryote evolution. Precambrian Research 297: 101–130. https://doi.org/10.1016/j.precamres.2017.04.042.
Article
Google Scholar
Ahmed, M., and S.C. George. 2004. Changes in the molecular composition of crude oils during their preparation for GC and GC–MS analyses. Organic Geochemistry 35(2): 137–155.
Google Scholar
Blumenberg, M., M. Krüger, K. Nauhaus, H.M. Talbot, B.I. Oppermann, R. Seifert, T. Pape, and W. Michaelis. 2006. Biosynthesis of hopanoids by sulfate-reducing bacteria (genus Desulfovibrio). Environmental Microbiology 8(7): 1220–1227.
Google Scholar
Blumenberg, M., V. Thiel, W. Riegel, L.C. Kah, and J. Reitner. 2012. Biomarkers of black shales formed by microbial mats, Late Mesoproterozoic (1.1 Ga) Taoudeni Basin Mauritania. Precambrian Research 196: 113–127.
Google Scholar
Blumenberg, M., V. Thiel, and J. Reitner. 2015. Organic matter preservation in the carbonate matrix of a recent microbial mat—is there a ‘mat seal effect’? Organic Geochemistry 87: 25–34.
Google Scholar
Boreham, C.J., I.H. Crick, and T.G. Powell. 1988. Alternative calibration of the Methylphenanthrene Index against vitrinite reflectance: application to maturity measurements on oils and sediments. Organic Geochemistry 12(3): 289–294.
Google Scholar
Bray, E.E., and E.D. Evans. 1961. Distribution of n-paraffins as a clue to recognition of source beds. Geochimica et Cosmochimica Acta 22(1): 2–15.
Google Scholar
Briggs, D.E., and R.E. Summons. 2014. Ancient biomolecules: their origins, fossilization, and role in revealing the history of life. BioEssays 36(5): 482–490.
Google Scholar
Brocks, J.J. 2011. Millimeter-scale concentration gradients of hydrocarbons in Archean shales: live-oil escape or fingerprint of contamination? Geochimica et Cosmochimica Acta 75(11): 3196–3213.
Google Scholar
Brocks, J.J., G.D. Love, R.E. Summons, A.H. Knoll, G.A. Logan, and S.A. Bowden. 2005. Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea. Nature 437(7060): 866–870.
Google Scholar
Butterfield, N.J. 2000. Bangiomorpha pubescens n. gen. n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology 26(3): 386–404.
Google Scholar
Butterfield, N.J. 2009. Modes of pre-Ediacaran multicellularity. Precambrian Research 173(1–4): 201–211. https://doi.org/10.1016/j.precamres.2009.01.008.
Article
Google Scholar
Butterfield, N.J. 2015. Early evolution of the Eukaryota. Palaeontology 58: 5–17. https://doi.org/10.1111/pala.12139.
Article
Google Scholar
Butterfield, N.J., A.H. Knoll, and K. Swett. 1990. A bangiophyte red alga from the Proterozoic of arctic Canada. Science 250(4977): 104–107.
Google Scholar
Duda, J.P., M. Blumenberg, V. Thiel, K. Simon, M. Zhu, and J. Reitner. 2014a. Geobiology of a palaeoecosystem with Ediacara-type fossils: The Shibantan Member (Dengying formation, South China). Precambrian Research 255: 48–62.
Google Scholar
Duda, J.P., V. Thiel, J. Reitner, and M. Blumenberg. 2014b. Assessing possibilities and limitations for biomarker analyses on outcrop samples: A case study on carbonates of the Shibantan Member (Ediacaran Period, Dengying Formation, South China). Acta Geologica Sinica (English Edition) 88(6): 1696–1704.
Google Scholar
Duda, J.P., V. Thiel, J. Reitner, and D.V. Grazhdankin. 2016. Opening up a window into ecosystems with Ediacara-type organisms: Preservation of molecular fossils in the Khatyspyt Lagerstätte (Arctic Siberia). PalZ. Paläontologische Zeitschrift 90(4): 659–671.
Google Scholar
Duda, J.P., G.D. Love, V.I. Rogov, D.S. Melnik, M. Blumenberg, and D.V. Grazhdankin. 2020. Understanding the geobiology of the terminal Ediacaran Khatyspyt Lagerstätte (Arctic Siberia, Russia). Geobiology 18(6): 643–662.
Google Scholar
Dutkiewicz, A., H. Volk, J. Ridley, and S. George. 2003. Biomarkers, brines, and oil in the Mesoproterozoic, Roper Superbasin Australia. Geology 31(11): 981–984.
Google Scholar
Eglinton, G., P.M. Scott, T. Belsky, A.L. Burlingame, and M. Calvin. 1964. Hydrocarbons of biological origin from a one-billion-year-old sediment. Science 145(3629): 263–264.
Google Scholar
Eigenbrode, J.L. 2008. Fossil lipids for life-detection: a case study from the early Earth record. Strategies of Life Detection 135: 161–185.
Google Scholar
Espitalié, J., J.L. Laporte, M. Madec, F. Marquis, P. Leplat, J. Paulet, and A. Boutefeu. 1977. Méthode rapide de caractérisation des roches mètres, de leur potentiel pétrolier et de leur degré d’évolution. Revue de l'Institut Français du Pétrole 32(1): 23–42. https://doi.org/10.2516/ogst:1977002.
Article
Google Scholar
Falk, H., and K. Wolkenstein. 2017. Natural product molecular fossils. In Progress in the chemistry of organic natural products, eds. A.D. Kinghorn, H. Falk, S. Gibbons, and J. Kobayashi, 1–126. Berlin: Springer.
Google Scholar
Flannery, E.N., and S.C. George. 2014. Assessing the syngeneity and indigeneity of hydrocarbons in the ∼1.4 Ga Velkerri Formation, McArthur Basin, using slice experiments. Organic Geochemistry 77: 115–125.
Google Scholar
Gelpi, E., H. Schneider, J. Mann, and J. Oró. 1970. Hydrocarbons of geochemical significance in microscopic algae. Phytochemistry 9(3): 603–612. https://doi.org/10.1016/S0031-9422(00)85700-3.
Article
Google Scholar
German [Hermann], T.N., and V.N. Podkovyrov. 2009. New insights into the nature of the Late Riphean Eosolenides. Precambrian Research 173(1–4): 154–162. https://doi.org/10.1016/j.precamres.2009.03.018.
Article
Google Scholar
Gibson, T.M., P.M. Shih, V.M. Cumming, W.W. Fischer, P.W. Crockford, M.S.W. Hodgskiss, and G.P. Halverson. 2018. Precise age of Bangiomorpha pubescens dates the origin of eukaryotic photosynthesis. Geology 46(2): 135–138. https://doi.org/10.1130/g39829.1.
Article
Google Scholar
Han, T.M., and B. Runnegar. 1992. Megascopic eukaryotic algae from the 2.1-billion-year-old Negaunee iron-formation Michigan. Science 257(5067): 232–235.
Google Scholar
Härtner, T., K.L. Straub, and E. Kannenberg. 2005. Occurrence of hopanoid lipids in anaerobic Geobacter species. FEMS Microbiology Letters 243(1): 59–64.
Google Scholar
Haven, H.L. ten, J.W. de Leeuw, J.S. Damsté, P.A. Schenck, S.E. Palmer, and J.E. Zumberge. 1988. Application of biological markers in the recognition of palaeohypersaline environments. Geological Society, London, Special Publications 40(1): 123–130.
Google Scholar
Hermann, T.N. 1990. Organic world a billion years ago. Leningrad: Nauka. (in English and Russian).
Google Scholar
Hermann, T.N., and V.N. Podkovyrov. 2006. Fungal remains from the Late Riphean. Paleontological Journal 40(2): 207–214.
Google Scholar
Hermann, T.N., and V.N. Podkovyrov. 2008. On the nature of the Precambrian microfossils Arctacellularia and Glomovertella. Paleontological Journal 42(6): 655–664. https://doi.org/10.1134/S0031030108060117.
Article
Google Scholar
Hermann, T.N., and V.N. Podkovyrov. 2010. A discovery of Riphean heterotrophs in the Lakhanda Group of Siberia. Paleontological Journal 44(4): 374–383.
Google Scholar
Hu, G., T. Zhao, and Y. Zhou. 2014. Depositional age, provenance and tectonic setting of the Proterozoic Ruyang Group, southern margin of the North China Craton. Precambrian Research 246: 296–318. https://doi.org/10.1016/j.precamres.2014.03.013.
Article
Google Scholar
Jankauskas [Yankauskas], T.V., N.S. Mikhailova, T.N. German [Hermann], V.N. Sergeev, Z.M. Abduazimova, M.Y. Belova, and M.S. Yakshin. 1989. Mikrofossilii dokembriya SSSR. Leningrad: Nauka.
Google Scholar
Javaux, E.J. 2007. The early eukaryotic fossil record. In Eukaryotic membranes and cytoskeleton. Advances in experimental medicine and biology, 1–19. New York: Springer.
Google Scholar
Javaux, E.J. 2011. Early eukaryotes in Precambrian oceans. In Origins and evolution of life: an astrobiological perspective, eds. M. Gargaud, P. López-Garcìa, and H. Martin, 414–449. Cambridge: Cambridge University Press.
Google Scholar
Javaux, E.J., and A.H. Knoll. 2017. Micropaleontology of the lower Mesoproterozoic Roper Group, Australia, and implications for early eukaryotic evolution. Journal of Paleontology 91(2): 199–229.
Google Scholar
Javaux, E.J., and K. Lepot. 2018. The Paleoproterozoic fossil record: implications for the evolution of the biosphere during Earth’s middle-age. Earth-Science Reviews 176: 68–86.
Google Scholar
Javaux, E.J., A.H. Knoll, and M.R. Walter. 2001. Morphological and ecological complexity in early eukaryotic ecosystems. Nature 412(6842): 66–69.
Google Scholar
Kaneda, T. 1991. Iso- and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiological Reviews 55(2): 288–302.
Google Scholar
Kissin, Y.V. 1987. Catagenesis and composition of petroleum: origin of n-alkanes and isoalkanes in petroleum crudes. Geochimica et Cosmochimica Acta 51(9): 2445–2457.
Google Scholar
Knoll, A.H. 2011. The multiple origins of complex multicellularity. Annual Review of Earth and Planetary Sciences 39: 217–239.
Google Scholar
Knoll, A.H. 2014. Paleobiological perspectives on early eukaryotic evolution. Cold Spring Harbor Perspectives in Biology 6(1): a016121.
Google Scholar
Knoll, A.H., R.E. Summons, J.R. Waldbauer, and J.E. Zumberge. 2007. The geological succession of primary producers in the oceans. In Evolution of primary producers in the sea, eds. P.G. Falkowski and A.H. Knoll, 133–163. Academic Press.
Google Scholar
Kumar, S. 1995. Megafossils from the Mesoproterozoic Rohtas Formation (the Vindhyan Supergroup), Katni area, central India. Precambrian Research 72(3–4): 171–184.
Google Scholar
Lamb, D.M., S.M. Awramik, D.J. Chapman, and S. Zhu. 2009. Evidence for eukaryotic diversification in the ∼1800 million-year-old Changzhougou Formation North China. Precambrian Research 173(1–4): 93–104.
Google Scholar
Lan, Z., X. Li, Z.Q. Chen, Q.P. Li, A. Hofmann, Y.Q. Zhang, and J.H. Li. 2014. Diagenetic xenotime age constraints on the Sanjiaotang Formation, Luoyu Group, southern margin of the North China Craton: implications for regional stratigraphic correlation and early evolution of eukaryotes. Precambrian Research 251: 21–32. https://doi.org/10.1016/j.precamres.2014.06.012.
Article
Google Scholar
Lee, C., G.D. Love, L.L. Jahnke, M.D. Kubo, and D.J. Des Marais. 2019. Early diagenetic sequestration of microbial mat lipid biomarkers through covalent binding into insoluble macromolecular organic matter (IMOM) as revealed by sequential chemolysis and catalytic hydropyrolysis. Organic Geochemistry 132: 11–22.
Google Scholar
Lee, C., G.D. Love, L.L. Jahnke, M.D. Kubo, and D.J. Des Marais. 2021. Diagenetic transformations and preservation of free and bound lipids in a hypersaline microbial mat from Guerrero Negro, Baja California Sur Mexico. Organic Geochemistry 153: 104196.
Google Scholar
Loron, C.C., C. François, R.H. Rainbird, E.C. Turner, S. Borensztajn, and E.J. Javaux. 2019a. Early fungi from the Proterozoic era in Arctic Canada. Nature 570(7760): 232–235.
Google Scholar
Loron, C.C., R.H. Rainbird, E.C. Turner, J.W. Greenman, and E.J. Javaux. 2019b. Organic-walled microfossils from the late Mesoproterozoic to early Neoproterozoic lower Shaler Supergroup (Arctic Canada): diversity and biostratigraphic significance. Precambrian Research 321: 349–374.
Google Scholar
Love, G.D., C.E. Snape, A.D. Carr, and R.C. Houghton. 1995. Release of covalently-bound alkane biomarkers in high yields from kerogen via catalytic hydropyrolysis. Organic Geochemistry 23: 981–986.
Google Scholar
Love, G.D., S.A. Bowden, L.L. Jahnke, C.E. Snape, C.N. Campbell, J.G. Day, and R.E. Summons. 2005. A catalytic hydropyrolysis method for the rapid screening of microbial cultures for lipid biomarkers. Organic Geochemistry 36(1): 63–82.
Google Scholar
Love, G.D., C. Stalvies, E. Grosjean, W. Meredith, and C.E. Snape. 2008. Analysis of molecular biomarkers covalently bound within Neoproterozoic sedimentary kerogen. The Paleontological Society Papers 14: 67–83.
Google Scholar
Love, G.D., E. Grosjean, C. Stalvies, D.A. Fike, J.P. Grotzinger, A.S. Bradley, and S.A. Bowring. 2009. Fossil steroids record the appearance of Demospongiae during the Cryogenian period. Nature 457(7230): 718–721. https://doi.org/10.1038/nature07673.
Article
Google Scholar
Love, G.D., and J.A. Zumberge. 2021. Emerging patterns in proterozoic lipid biomarker records. In Elements in geochemical tracers in earth system science. Cambridge: Cambridge University Press. https://doi.org/10.1017/9781108847117.
Luo, G., C. Hallmann, S. Xie, X. Ruan, and R.E. Summons. 2015. Comparative microbial diversity and redox environments of black shale and stromatolite facies in the Mesoproterozoic Xiamaling Formation. Geochimica et Cosmochimica Acta 151: 150–167.
Google Scholar
Marshall, C.P., G.D. Love, C.E. Snape, A.C. Hill, A.C. Allwood, M.R. Walter, and R.E. Summons. 2007. Structural characterization of kerogen in 3.4 Ga Archaean cherts from the Pilbara Craton, Western Australia. Precambrian Research 155(1–2): 1–23.
Google Scholar
Meredith, W., C.A. Russell, M. Cooper, C.E. Snape, G.D. Love, D. Fabbri, and C.H. Vane. 2004. Trapping hydropyrolysates on silica and their subsequent thermal desorption to facilitate rapid fingerprinting by GC–MS. Organic Geochemistry 35(1): 73–89.
Google Scholar
Meredith, W., C.E. Snape, and G.D. Love. 2014. Development and use of catalytic hydropyrolysis (HyPy) as an analytical tool for organic geochemical applications. In Principles and practice of analytical techniques in geosciences, ed. K. Grice, 171–208. Royal Society of Chemistry.
Google Scholar
Miao, L., M. Moczydłowska, S. Zhu, and M. Zhu. 2019. New record of organic-walled, morphologically distinct microfossils from the late Paleoproterozoic Changcheng Group in the Yanshan Range, North China. Precambrian Research 321: 172–198.
Google Scholar
Mißbach, H., J.P. Duda, N.K. Lünsdorf, B.C. Schmidt, and V. Thiel. 2016. Testing the preservation of biomarkers during experimental maturation of an immature kerogen. International Journal of Astrobiology 15(3): 165–175.
Google Scholar
Nagovitsin, K.E. 2008. Bioraznoobrazie gribov na granitse mezo- i neoproterozoya (lakhandinskaya biota, Vostochnaya Sibir’) [Biodiversity of Fungi at the meso-neoproterozoic boundary (Lakhanda Biota Eastern Siberia]. Novosti Paleontologii i Stratigrafii 49(10–11): 147–151.
Google Scholar
Nagovitsin, K.E., D.V. Grazhdankin, and B.B. Kochnev. 2008. Ediacaria in the Siberian hypostratotype of the Riphean. Doklady Earth Sciences 419(2): 423–427.
Google Scholar
Nguyen, K., G.D. Love, J.A. Zumberge, A.E. Kelly, J.D. Owens, M.K. Rohrssen, and T.W. Lyons. 2019. Absence of biomarker evidence for early eukaryotic life from the Mesoproterozoic Roper Group: searching across a marine redox gradient in mid-Proterozoic habitability. Geobiology 17(3): 247–260.
Google Scholar
Ogg, J.G., G.M. Ogg, and F.M. Gradstein. 2016. A concise geologic time scale: 2016. Elsevier.
Google Scholar
Ovchinnikova, G.V., M.A. Semikhatov, I.M. Vasil’eva, I.M. Gorokhov, O.K. Kaurova, V.N. Podkovyrov, and B.M. Gorokhovskii. 2001. Pb-Pb age of limestones of the Middle Riphean Malgina Formation, the Uchur-Maya region of East Siberia. Stratigraphy and Geological Correlation 9(6): 527–539.
Google Scholar
Pang, K., Q. Tang, J.D. Schiffbauer, J. Yao, X. Yuan, B. Wan, and S. Xiao. 2013. The nature and origin of nucleus-like intracellular inclusions in P aleoproterozoic eukaryote microfossils. Geobiology 11(6): 499–510.
Google Scholar
Pawlowska, M.M., N.J. Butterfield, and J.J. Brocks. 2013. Lipid taphonomy in the Proterozoic and the effect of microbial mats on biomarker preservation. Geology 41(2): 103–106.
Google Scholar
Pehr, K., R. Bisquera, A.N. Bishop, F. Ossa Ossa, W. Meredith, A. Bekker, and G.D. Love. 2021. Preservation and Distributions of Covalently Bound Polyaromatic Hydrocarbons in Ancient Biogenic Kerogens and Insoluble Organic Macromolecules. Astrobiology 21(9): 1049–1075.
Google Scholar
Peng, Y., H. Bao, and X. Yuan. 2009. New morphological observations for Paleoproterozoic acritarchs from the Chuanlinggou Formation North China. Precambrian Research 168(3): 223–232. https://doi.org/10.1016/j.precamres.2008.10.005.
Article
Google Scholar
Peters, K.E. 1986. Guidelines for evaluating petroleum source rock using programmed pyrolysis. AAPG Bulletin 70(3): 318–329. https://doi.org/10.1306/94885688-1704-11D7-8645000102C1865D.
Article
Google Scholar
Peters, K.E., and M.R. Cassa. 1994. Applied source rock geochemistry: chapter 5: Part II. Essential elements. In The petroleum system—from source to trap, eds. K.E. Peters, M.R. Cassa, L.B. Magoon, and W.G. Dow. AAPG Memoir 60: 93–120.
Google Scholar
Peters, K.E., C.C. Walters, and J.M. Moldowan. 2005a. The biomarker guide 1: Biomarkers and isotopes in the environment and human history. Cambridge: Cambridge University Press.
Google Scholar
Peters, K.E., C.C. Walters, and J.M. Moldowan. 2005b. The biomarker guide 2: Biomarkers and isotopes in petroleum systems and earth history. Cambridge, UK: Cambridge University Press.
Google Scholar
Podkovyrov, V.N. 2009. Mesoproterozoic Lakhanda Lagerstätte, Siberia: Paleoecology and taphonomy of the microbiota. Precambrian Research 173(1): 146–153.
Google Scholar
Porter, S. 2004. The fossil record of early eukaryotic diversification. The Paleontological Society Papers 10: 35–50. https://doi.org/10.1017/S1089332600002321.
Article
Google Scholar
Porter, S. 2011. The rise of predators. Geology 39(6): 607–608. https://doi.org/10.1130/focus062011.1.
Article
Google Scholar
Prasad, B., S.N. Uniyal, and R. Asher. 2005. Organic-walled microfossils from the Proterozoic Vindhyan Supergroup of Son Valley, Madhya Pradesh, India. The Palaeobotanist 54: 13–60.
Google Scholar
Radke, M., and D.H. Welte. 1983. The Methylphenanthrene Index (MPI): a maturity parameter based on aromatic hydrocarbons. In Advances in Organic Geochemistry 1981: 10th International Meeting on Organic Geochemistry, Bergen, September 1981, Proceedings. eds. M. Bjorøy, and the European Association of Organic Geochemists, 504–512. Chichester: Wiley.
Radke, M., D.H. Welte, and H. Willsch. 1982. Geochemical study on a well in the Western Canada Basin: Relation of the aromatic distribution pattern to maturity of organic matter. Geochimica et Cosmochimica Acta 46(1): 1–10.
Google Scholar
Radke, M., D. Leythaeuser, and M. Teichmüller. 1984. Relationship between rank and composition of aromatic hydrocarbons for coals of different origins. Organic Geochemistry 6: 423–430.
Google Scholar
Radke, M., D.H. Welte, and H. Willsch. 1986. Maturity parameters based on aromatic hydrocarbons: Influence of the organic matter type. Organic Geochemistry 10(1–3): 51–63.
Google Scholar
Rainbird, R.H., R.A. Stern, A.K. Khudoley, A.P. Kropachev, L.M. Heaman, and V.I. Sukhorukov. 1998. U-Pb geochronology of Riphean sandstone and gabbro from southeast Siberia and its bearing on the Laurentia–Siberia connection. Earth and Planetary Science Letters 164(3–4): 409–420. https://doi.org/10.1016/s0012-821x(98)00222-2.
Article
Google Scholar
Ray, J.S., M.W. Martin, J. Veizer, and S.A. Bowring. 2002. U–Pb zircon dating and Sr isotope systematics of the Vindhyan Supergroup India. Geology 30(2): 131–134. https://doi.org/10.1130/0091-7613(2002)030%3c0131:Upzdas%3e2.0.Co;2.
Article
Google Scholar
Reinhardt, M., J.-P. Duda, M. Blumenberg, C. Ostertag-Henning, J. Reitner, C. Heim, and V. Thiel. 2018. The taphonomic fate of isorenieratene in Lower Jurassic shales–controlled by iron? Geobiology 16(3): 237–251.
Google Scholar
Rohmer, M., P. Bouvier-Nave, and G. Ourisson. 1984. Distribution of hopanoid triterpenes in prokaryotes. Microbiology 130(5): 1137–1150.
Google Scholar
Schneider, D.A., M.E. Bickford, W.F. Cannon, K.J. Schulz, and M.A. Hamilton. 2002. Age of volcanic rocks and syndepositional iron formations, Marquette Range Supergroup: Implications for the tectonic setting of Paleoproterozoic iron formations of the Lake Superior region. Canadian Journal of Earth Sciences 39(6): 999–1012.
Google Scholar
Schwarzbauer, J., and B. Jovančićević. 2016. From biomolecules to chemofossils. Springer International Publishing.
Google Scholar
Seilacher, A. 1970. Begriff und Bedeutung der Fossil-Lagerstätten. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 1970(1): 34–39.
Google Scholar
Seilacher, A. 1999. Biomat-related lifestyles in the Precambrian. Palaios 14(1): 86–93.
Google Scholar
Semikhatov, M.A., G.V. Ovchinnikova, I.M. Gorokhov, A.B. Kuznetsov, I.M. Vasil’eva, B.M. Gorokhovskii, and V.N. Podkovyrov. 2000. Izotopnyi vozrast granitsy stednego i verkhnego rifeya: Pb–Pb geokhronologiya karbonatnykh porod lakhandinskoi serii, Vostochnaya Sibir’. [Isotope age of the Middle-Upper Riphean boundary: Pb–Pb geochronology of the Lakhanda Group carbonates Eastern Siberia]. Doklady Akademii Nauk 372(2): 216–221.
Google Scholar
Sharma, M., M. Tiwari, S. Ahmad, R. Shukla, B. Shukla, V. Singh, and S. Kumar. 2016. Palaeobiology of Indian Proterozoic and Early Cambrian Successions—recent developments. Proceedings of the Indian National Science Academy 82(3): 559–579.
Google Scholar
Shen, Y., V. Thiel, J.P. Duda, and J. Reitner. 2018. Tracing the fate of steroids through a hypersaline microbial mat (Kiritimati, Kiribati/Central Pacific). Geobiology 16(3): 307–318.
Google Scholar
Shen, Y., V. Thiel, P. Suarez-Gonzalez, S.W. Rampen, and J. Reitner. 2020. Sterol preservation in hypersaline microbial mats. Biogeosciences 17(3): 649–666.
Google Scholar
Sherman, L.S., J.R. Waldbauer, and R.E. Summons. 2007. Improved methods for isolating and validating indigenous biomarkers in Precambrian rocks. Organic Geochemistry 38(12): 1987–2000.
Google Scholar
Shiea, J., S.C. Brassell, and D.M. Ward. 1990. Mid-chain branched mono-and dimethyl alkanes in hot spring cyanobacterial mats: A direct biogenic source for branched alkanes in ancient sediments? Organic Geochemistry 15(3): 223–231.
Google Scholar
Shuvalova, J.V., K.E. Nagovitsin, and P.Y. Parkhaev. 2021a. Evidences of the oldest trophic interactions in the Riphean Biota (Lakhanda Lagerstätte, southeastern Siberia). Doklady Biological Sciences 496: 34–40. https://doi.org/10.31857/S2686738921010200.
Article
Google Scholar
Shuvalova, J.V., K.E. Nagovitsin, J.-P. Duda, and P.Y. Parkhaev. 2021b. Early Eukaryotes in the Lakhanda Biota (Mesoproterozoic, Southeastern Siberia)—morphological and geochemical evidence. Doklady Biological Sciences 500: 127–132. https://doi.org/10.1134/S0012496621050100.
Article
Google Scholar
Singh, V.K., and M. Sharma. 2014. Morphologically complex organic-walled microfossils (OWM) from the Late Palaeoproterozoic—Early Mesoproterozoic Chitrakut Formation, Vindhyan Supergroup, Central India and their implications on the antiquity of eukaryotes. Journal of the Palaeontological Society of India 59(1): 89–102.
Google Scholar
Suslova, E.A., T.M. Arfenova, S.V. Saraev, and K.E. Nagovitsyn. 2017. Organic geochemistry of rocks of the Mesoproterozoic Malgin Formation and their depositional environments (southeastern Siberian Platform). Russian Geology and Geophysics 58(3–4): 516–528.
Google Scholar
Tang, Q.K., X. Yuan. Pang, and S. Xiao. 2020. A one-billion-year-old multicellular chlorophyte. Nature Ecology & Evolution 4(4): 543–549.
Google Scholar
Thiel, V., M. Blumenberg, T. Pape, R. Seifert, and W. Michaelis. 2003. Unexpected occurrence of hopanoids at gas seeps in the Black Sea. Organic Geochemistry 34(1): 81–87.
Google Scholar
Treibs, A. 1934. Chlorophyll- und Häminderivate in bituminösen Gesteinen, Erdölen, Erdwachsen und Asphalten. Ein Beitrag zur Entstehung des Erdöls. Justus Liebigs Annalen der Chemie 510(1):42–62.
Google Scholar
Treibs, A. 1936. Chlorophyll- und Häminderivate in organischen Mineralstoffen. Angewandte Chemie 49: 682–686.
Google Scholar
Walter, M.R. 1972. Stromatolites and the biostratigraphy of the Australian Precambrian and Cambrian. Special Papers in Palaeontology 11: 1–190.
Google Scholar
Walter, M.R., R. Du Rulin, and R.J. Horodyski. 1990. Coiled carbonaceous megafossils from the Middle Proterozoic of Jixian (Tianjin) and Montana. American Journal of Science 290: 133–148.
Google Scholar
Zhang, S., J. Su, S. Ma, H. Wang, X. Wang, K. He, H. Wang, and D.E. Canfield. 2021. Eukaryotic red and green algae populated the tropical ocean 1400 million years ago. Precambrian Research 357: 106166. https://doi.org/10.1016/j.precamres.2021.106166.
Article
Google Scholar
Zhu, S., M. Zhu, A.H. Knoll, Z. Yin, F. Zhao, S. Sun, and H. Liu. 2016. Decimetre-scale multicellular eukaryotes from the 1.56-billion-year-old Gaoyuzhuang Formation in North China. Nature. Communications 7(1): 1–8.
Google Scholar
Zumberge, J.A., D. Rocher, and G.D. Love. 2020. Free and kerogen-bound biomarkers from late Tonian sedimentary rocks record abundant eukaryotes in mid-Neoproterozoic marine communities. Geobiology 18(3): 326–347.
Google Scholar