Aehnelt, M., and H. Weller. 2004. Die ältesten Kalke im Elbingeröder Riffkomplex (Harz): Conodontenstratigraphische Datierung einer Vorphase der Riffentwicklung. Senckenbergiana Lethaea 84: 195–223.
Ahlbrecht, J. 1997. Verkalkte Mikrobenrelikte und kryptische Habitate des Rübeland-Mikrobialiths (Elbingeröder Riffkomplex, Harz, Mittel-bis Oberdevon). 1–184. Unpublished Diploma thesis, University of Göttingen.
Aubrecht, R. 2011. Stromatactis. In Encyclopedia of geobiology, eds. J. Reitner and V. Thiel, 847–850. Berlin: Springer.
Google Scholar
Böhm, F., and T. Brachert. 1993. Deep-water stromatolites and Frutexites Maslov from the early and middle Jurassic of S-Germany. Facies 28: 145–168.
Google Scholar
Bourque, P.A., and F. Boulvain. 1993. A model for the origin and petrogenesis of the red Stromatactis Limestone of Paleozoic carbonate mounds. Journal of Sedimentary Petrology 63: 607–619.
Google Scholar
Bourque, P.A., and H. Gignac. 1983. Sponge-constructed Stromatactis mud mounds, Silurian of Gaspé, Quebec. Journal of Sedimentary Petrology 53: 521–532.
Google Scholar
Braga, J.C., A. Puga-Bernabeu, K. Heindel, M.A. Patterson, D. Birgel, J. Peckmann, I. Sachez-Almazo, J.M. Webster, Y. Yokoyama, and R. Riding. 2019. Microbialites in last glacial maximum and deglacial reefs of the Great Barrier Reef (IODP Expedition 325, NE Australia). Palaeogeography, Palaeoclimatology, Palaeoecology 514: 1–17.
Google Scholar
Brunton, F.R., and O.A. Dixon. 1994. Siliceous sponge-microbe biotic associations and their recurrence through the Phanerozoic as reef mound constructors. Palaios 9: 370–387.
Google Scholar
Copper, P. 2002. Silurian and Devonian reefs: 80 million years of global greenhouse between two ice ages. In Phanerozoic reef patterns, eds. W. Kiessling, E. Flügel, and J. Golonka. SEPM Special Publication 72: 181–238.
Fisher, D.C., and M.H. Nitecki. 1982. Problems in the analysis of receptaculitid affinities. In Third North American Paleontological Convention, Proceedings 1, eds. B. Mamet and M.J. Copeland, 181–186. Toronto: Business and Economic Service.
Google Scholar
Friedel, C.H., and C. Janssen. 1988. Structural investigations of the Paleozoic reef limestone in the Elbingerode Complex (Lower Harz, G.D.R.). Zeitschrift für Geologische Wissenschaften 16: 421–438.
Google Scholar
Fuchs, A. 1986. Zur Biostratigraphie der Karbonatgesteine des Elbingeröder Komplexes (Harz) unter besonderer Berücksichtigung der Riffkalke auf der Grundlage von Conodonten, 1–293. Unpublished PhD thesis, University of Greifswald.
Fuchs, A. 1987. Conodont biostratigraphy of the Elbingerode Reef Complex, Harz Mountains. Acta Geologica Polonica 37: 33–50.
Google Scholar
Fuchs, A. 1989. Remarks on the Middle/Upper Devonian boundary in the Elbingerode Reef Complex, Harz Mountains. Courier Forschungsinstitut Senckenberg 117: 267–273.
Google Scholar
Fuchs, A. 1990. Character and termination of the Devonian reefs in the Harz Mountains (Elbingerode Complex, Germany). Facies 23: 97–108.
Google Scholar
George, A.D. 1999. Deep-water stromatolites, Canning Basin, Australia. Palaios 14: 493–505.
Google Scholar
Gischler, E. 1995. Current and wind induced facies patterns in a Devonian atoll: Iberg Reef, Harz Mts, Germany. Palaios 10: 180–189.
Google Scholar
Gischler, E. 1996. Late Devonian-early Carboniferous deep-water coral assemblages and sedimentation on a Devonian seamount: Iberg Reef, Harz Mts., Germany. Palaeogeography, Palaeoclimatology, Palaeoecology 123: 297–322.
Google Scholar
Gischler, E., A. Balinski, A. Fuchs, and D. Heidelberger. 2004. Famennian gastropod and brachiopod occurrences on top of Devonian seamounts: Elbingerode and Iberg reefs, Harz Mts, Germany. Senckenbergiana Lethaea 84: 125–139.
Google Scholar
Gischler, E., D. Birgel, B. Brunner, and J. Peckmann. 2020. Microbialite occurrence and patterns in Holocene reefs of Bora Bora, Society Islands. Palaios 35: 262–276.
Google Scholar
Gischler, E., K. Heindel, D. Birgel, B. Brunner, J. Reitner, and J. Peckmann. 2017. Cryptic biostalactites in a submerged karst cave of the Belize Barrier Reef revisited: Pendant bioconstructions cemented by microbial micrite. Palaeogeography, Palaeoecology, Palaeoclimatology 468: 34–51.
Google Scholar
Grammer, G.M., R.N. Ginsburg, P.K. Swart, D.F. McNeill, A.J. Jull, and D.R. Prezbindowski. 1993. Rapid growth rates of syndepositional marine aragonite cements in steep marginal slope deposits, Bahamas and Belize. Journal of Sedimentary Petrology 63: 983–989.
Google Scholar
Haq, B.U., and S.R. Schutter. 2008. A chronology of Paleozoic sea-level changes. Science 322: 64–68.
Google Scholar
Haley, B.A., G.P. Klinkhammer, and J. McManus. 2004. Rare earth elements in pore waters of marine sediments. Geochimica et Cosmochimica Acta 68: 1265–1279.
Google Scholar
Hebbeln, D., and E. Samankassou. 2015. Where did ancient carbonate mounds grow-in bathyal depth or in shallow shelf waters? Earth-Science Reviews 145: 56–65.
Google Scholar
Heim, C., N.V. Queric, D. Ionescu, N. Schäfer, and J. Reitner. 2017. Frutexites-like structures formed by iron oxidizing biofilms in the continental subsurface (Äspo Hard Rock Laboratory, Sweden). PLoS ONE 12: E0177542. https://doi.org/10.1371/journal.pone.0177542.
Article
Google Scholar
Heindel, K., D. Birgel, J. Peckmann, H. Kuhnert, and H. Westphal. 2010. Formation of deglacial microbialites in coral reefs off Tahiti (IODP 310) involving sulfate-reducing bacteria. Palaios 25: 618–635.
Google Scholar
Heindel, K., D. Birgel, B. Brunner, V. Thiel, H. Westphal, S.B. Ziegenbalg, E. Gischler, G. Cabioch, and J. Peckmann. 2012. Post-glacial microbialite formation in coral reefs in the Pacific Ocean, Caribbean, and Indian Ocean. Chemical Geology 304–305: 117–130.
Google Scholar
Himmler, T., W. Bach, G. Bohrmann, and J. Peckmann. 2010. Rare earth elements in authigenic methane-seep carbonates as tracers for fluid composition during early diagenesis. Chemical Geology 277: 126–136.
Google Scholar
James, N.P., and R.N. Ginsburg. 1979. The seaward margin of Belize barrier and atoll reefs. IAS Special Publication 3: 1–191.
Google Scholar
James, N.P., and R. Wood. 2010. Reefs. In Facies Models, 4, eds. N.P. James and D.W. Dalrymple, 421–447. St. Johns: Geological Association of Canada.
Google Scholar
Janssen, C., C.H. Friedel, and H.J. Paech. 1990. Zur Frühdiagenese der devonischen Riffkalksteine des Elbingeröder Komplexes (Harz). Zeitschrift für Geologische Wissenschaften 18: 977–985.
Google Scholar
Jonkers, L., A. Gopalakrishnan, L. Weßel, C. Chiessi, J. Groeneveld, P. Monien, D. Lessa, and R. Morard. 2021. Morphotype and crust effects on the geochemistry of Globorotalia inflata. Paleoceanography and Paleoclimatology 36: e2021PA004224. https://doi.org/10.1029/2021PA004224.
Article
Google Scholar
Kiessling, W., E. Flügel, and J. Golonka. 1999. Paleoreef Maps: Evaluation of a comprehensive database on Phanerozoic reefs. American Association of Petroleum Geologists Bulletin 83: 1552–1587.
Google Scholar
Krebs, W. 1969. Early void-filling cementation in Devonian fore-reef limestones, Germany. Sedimentology 12: 279–299.
Google Scholar
Krebs, W. 1974. Devonian carbonate complexes of Central Europe. In Reefs in time and space, ed. L.F. Laporte. SEPM Special Publication 18: 155–208.
Lee, J.H., and R. Riding. 2018. Marine oxygenation, lithistid sponges, and the early history of Paleozoic skeletal reefs. Earth-Science Reviews 181: 98–121.
Google Scholar
Luo, C., and J. Reitner. 2014. First report of fossil “keratose” demosponges in Phanerozoic carbonates: Preservation and 3-D reconstruction. Naturwissenschaften 101: 467–477.
Google Scholar
Luo, C., and J. Reitner. 2016. “Stromatolites” built by sponges and microbes—A new type of Phanerozoic bioconstruction. Lethaia 49: 555–570.
Google Scholar
Mehl, D. 1996. Phylogenie und Evolutionsökologie der Hexactinellida (Porifera) im Paläozoikum. Geologisch-Paläontologische Mitteilungen Innsbruck, Sonderband 4: 1–55.
Google Scholar
Milliman, J.D. 1974. Marine Carbonates, 1–375. Berlin: Springer.
Google Scholar
Montaggioni, L.F., and G.F. Camoin. 1993. Stromatolites associated with coralgal communities in Holocene high-energy reefs. Geology 21: 149–152.
Google Scholar
Monty, C.L.V. 1982. Cavity or fissure dwelling stromatolites (endo-stromatolites) from Belgian Devonian mud mounds (extended abstract). Annales de la Societé Géologique de Belgique 105: 343–344.
Google Scholar
Mossop, G.D. 1972. Origin of the peripheral rim, Redwater Reef, Alberta. Bulletin of Canadian Petroleum Geology 20: 238–280.
Google Scholar
Nance, R.D., G. Gutiérrez-Alonso, J.D. Keppie, U. Linnemann, J.B. Murphy, C. Quesada, R.A Strachan, and N.H. Woodcock. 2010. Evolution of the Rheic Ocean. In The Rheic Ocean: Palaeozoic evolution from Gondwana and Laurussia to Pangaea, ed. R.D. Nance. Gondwana Research 17: 194–222.
Neuweiler, F., V. d’Orazio, A. Immenhauser, G. Geipel, K.H. Heise, C. Cocozza, and T.M. Miano. 2003. Fulvic acid-like organic compounds control nucleation of marine calcite under suboxic conditions. Geology 31: 681–684.
Google Scholar
Oesterreich, B. 1991. Geochemische Faziesanalyse devonischer Riffkarbonate des Elbingeröder Komplexes (Östliches Rhenoherzynikum, Harz), 1–311. Unpublished PhD thesis, University of Greifswald.
Peckmann, J., E. Gischler, W. Oschmann, and J. Reitner. 2001. An early Carboniferous seep community and hydrocarbon-derived carbonates from the Harz Mountains, Germany. Geology 29: 271–274.
Google Scholar
Pellerin, A., D. Lacelle, D. Fortin, I.D. Clark, and B. Lauriol. 2009. Microbial diversity in endostromatolites (cf. fissure calcretes) and in the surrounding permafrost landscape, Haughton Impact Structure Region, Devon Island, Canada. Astrobiology 9: 807–822.
Google Scholar
Pigott, J.D., and L.S. Land. 1986. Interstitial water chemistry of Jamaican reef sediment: Sulfate reduction and submarine cementation. Marine Chemistry 19: 355–378.
Google Scholar
Pratt, B.R. 1982. Stromatolitic framework of carbonate mud-mounds. Journal of Sedimentary Petrology 52: 1203–1227.
Google Scholar
Pratt, B.R. 1995. The origin, biota and evolution of deep-water mud-mounds. In Carbonate mud mounds. Their origin and evolution, eds. C.L.V. Monty, D.W.J. Bosence, P.H. Bridges, and B.R. Pratt. IAS Special Publication 23: 49–123.
Pratt, B.R. 2001. Calcification of cyanobacterial filaments: Girvanella and the origin of lower Paleozoic lime mud. Geology 29: 763–766.
Google Scholar
Reitner, J. 1993. Modern cryptic microbialite/metazoan facies from Lizard Island (Great Barrier Reef, Australia): Formation and concepts. Facies 29: 3–40.
Google Scholar
Reitner, J. 2011. Biofilms. In Encyclopedia of geobiology, eds. J. Reitner and V. Thiel, 134–135. Berlin: Springer.
Google Scholar
Reitner, J., P. Gautret, F. Marin, and F. Neuweiler. 1995. Automicrites in a modern marine microbialite. Formation model via organic matrices (Lizard Island, Great Barrier Reef, Australia). Bulletin de l'Institut Océanographique Monaco, Numeró Spécial
14: 237–263.
Google Scholar
Riding, R. 1991a. Calcified cyanobacteria. In Calcareous algae and stromatolites, ed. R. Riding, 21–51. Berlin: Springer.
Google Scholar
Riding, R. 1991b. Classification of microbial carbonates. In Calcareous algae and stromatolites, ed. R. Riding, 55–85. Berlin: Springer.
Google Scholar
Riding, R., and A. Virgone. 2020. Hybrid carbonate: In situ abiotic, microbial and skeletal co-precipitates. Earth-Science Reviews 208: 103300. https://doi.org/10.1016/j.earscirev2020/103300.
Article
Google Scholar
Riding, R., S.M. Awramik, B.M. Winsborough, K.M. Griffin, and R.F. Dill. 1991. Bahamian giant stromatolites: Microbial composition of surface mats. Geological Magazine 128: 227–234.
Google Scholar
Ries, J.B. 2010. Review: Geological and experimental evidence for secular variation in seawater Mg/Ca (calcite-aragonite seas) and its effects on marine biological calcification. Biogeosciences 7: 2795–2849.
Google Scholar
Ruchholz, K. 1989. Begründung und Bedeutung des Bode-Lineaments. Wissenschaftliche Zeitschrift der Ernst-Moritz-Arndt-Universität Greifswald, Mathematisch-Naturwissenschaftliche Reihe 38: 63–69.
Sames, B., M. Wagreich, J.E. Wendler, B.U. Haq, C.P. Conrad, M.C. Melinte-Dobrinescu, X. Hu, I. Wendler, E. Wolfgring, I.Ö. Yilmaz, and S.O. Zorina. 2016. Review: Short-term sea-level changes in a greenhouse world—A view from the Cretaceous. Palaeogeography, Palaeoclimatology, Palaeoecology 441: 393–411.
Google Scholar
Schlager, W. 2000. Sedimentation rates and growth potential of tropical, cool-water and mud-mound carbonate systems. In Carbonate platform systems: Components and interactions, eds. E. Insalaco, P. Skelton, and T.J. Palmer. Geological Society of London, Special Publication 178: 217–227.
Smrzka, D., J. Zwicker, D. Misch, C. Walkner, S. Gier, P. Monien, G. Bohrmann, and J. Peckmann. 2019. Oil seepage and carbonate formation: A case study from the southern Gulf of Mexico. Sedimentology 66: 2318–2353.
Google Scholar
Spötl, C., and T. Vennemann. 2003. Continuous-flow isotope ratio mass spectrometric analysis of carbonate minerals. Rapid Communications in Mass Spectrometry 17: 1004–1006.
Google Scholar
Suosaari, E.P., R.P. Reid, P.E. Playford, J.S. Foster, J.F. Stolz, G. Casaburi, P.D. Hagan, V. Chirayath, I.G. Macintyre, N.J. Planavsky, and G.P. Eberli. 2016. New multi-scale perspectives on the stromatolites of Shark Bay, Western Australia. Scientific Reports 6: 20557. https://doi.org/10.1038/srep20557.
Article
Google Scholar
Tait, J.A., V. Bachtadse, W. Franke, and H.C. Soffel. 1997. Geodynamic evolution of the European Variscan fold belt. Geologische Rundschau 86: 585–598.
Google Scholar
Taylor, S.R., and S.M. McLennan. 1985. The continental crust: Its composition and evolution. An examination of the geochemical record preserved in sedimentary rocks, 1–328. Oxford: Blackwell.
Google Scholar
Turner, E.C. 2021. Possible poriferan bodyfossils in early Neoproterozoic reefs. Nature. https://doi.org/10.1038/s41586-021-03773-z.
Article
Google Scholar
Van Lith, Y., R. Warthmann, C. Vasconselos, and J.A. McKenzie. 2003. Sulphate-reducing bacteria induce low-temperature Ca-dolomite and high Mg-calcite formation. Geobiology 1: 71–79.
Google Scholar
Webb, G.E. 1996. Was Phanerozoic reef history controlled by the distribution of nonenzymatically secreted reef carbonates (microbial carbonate and biologically induced cement)? Sedimentology 43: 947–971.
Google Scholar
Webb, G.E. 2001. Famennian mud-mounds in the proximal core-reef slope, Canning Basin, Westerns Australia. Sedimentary Geology 145: 295–315.
Google Scholar
Weller, G.H. 1989a. Sedimentologie von Mud Mounds und ihr Nachweis im Harz. Wissenschaftliche Zeitschrift der Ernst-Moritz-Arndt-Universität Greifswald, Mathematisch-Naturwissenschaftliche Reihe 38: 70–78.
Google Scholar
Weller, H. 1989b. Das Rübeländer Mud Mound im Riffkomplex von Elbingerode (Harz) und seine sedimentologischen Eigenschaften. Hercynia (Neue Folge)
26: 321–337.
Google Scholar
Weller, H. 1991. Facies and development of the Devonian (Givetian/Frasnian) Elbingerode Reef Complex in the Harz area (Germany). Facies 25: 1–50.
Google Scholar
Weller, H. 1995. The Devonian mud mound of Rübeland in the Harz Mountains/Germany. In Mud mounds: A polygenetic spectrum of fine-grained carbonate buildups, eds. J. Reitner and F. Neuweiler. Facies 32: 43–49.
Weller, H. 2003. Anmerkungen zur Devon-Korrelationstabelle, R 078 di-ds 03: Lithostratigraphie im Devon und Unterkarbon des Elbingeröder Komplexes (Harz) - ein Überblick. Senckenbergiana Lethaea 83: 199–204.
Google Scholar
Weller, H. 2008. Elbingeröder Komplex. In Stratigraphie von Deutschland VIII. Devon, ed. Deutsche Stratigraphische Kommission. Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften 52: 525–531.
Google Scholar
Weller, H., and D. Mucke, 2014. Geologische Karte Elbingeröder Komplex 1:25.000. In Geologisch-Montanhistorische Karte Elbingeröder Komplex, eds. K. Stedingk, and I. Rappsilber. Halle/S.: Landesamt für Geologie und Bergwesen Sachsen-Anhalt.
Wood, R., and C. Oppenheimer. 2000. Spur and groove morphology from a late Devonian reef. Sedimentary Geology 133: 185–193.
Google Scholar
Ziegler, W., and C.A. Sandberg. 1990. The Late Devonian standard conodont zonation. Courier Forschungsinstitut Senckenberg 121: 1–115.
Google Scholar