Antcliffe, J.B. 2013. Questioning the evidence of organic compounds called sponge biomarkers. Palaeontology 56: 917–925.
Google Scholar
Antcliffe, J.B., R.H.T. Callow, and M.D. Brasier. 2014. Giving the early fossil record of sponges a squeeze. Biological Reviews 89: 972–1004.
Google Scholar
Arp, G., A. Reimer, and J. Reitner. 2001. Photosynthesis-induced biofilm calcification and calcium concentrations in Phanerozoic oceans. Science 292: 1071–1074.
Google Scholar
Bambach, R.K., A.M. Bush, and D.H. Erwin. 2007. Autecology and the filling of ecospace: key metazoan radiations. Palaeontology 50: 1–22.
Google Scholar
Bate, R.H., and B.A. East. 1972. The structure of the ostracode carapace. Lethaia 5: 177–194.
Google Scholar
Bengtson, S. 1983. The early history of the Conodonta. Fossils and Strata 15: 5–9.
Google Scholar
Bengtson, S., and Z. Yue. 1997. Fossilized metazoan embryos from the earliest Cambrian. Science 277: 1645–1648.
Google Scholar
Bengtson, S., S. Conway Morris, B.J. Cooper, P.A. Jell, and B.N. Runnegar. 1990. Early Cambrian fossils from South Australia. Memoirs of the Association of Australasian Palaeontologists 9: 1–364.
Google Scholar
Bentov, S., P. Zaslansky, A. Al-Sawalmih, A. Masic, P. Fratzl, A. Sagi, A. Berman, and B. Aichmayer. 2012. Enamel-like apatite crown covering amorphous mineral in a crayfish mandible. Nature Communications 3: 839.
Google Scholar
Bentov, S., S. Abehsera, and A. Sagi. 2016a. The mineralized exoskeletons of crustaceans. In Extracellular composite matrices in arthropods, eds. E. Cohen and B. Moussian, 137–163. Cham: Springer.
Google Scholar
Bentov, S., E.D. Aflalo, J. Tynyakov, L. Glazer, and A. Sagi. 2016b. Calcium phosphate mineralization is widely applied in crustacean mandibles. Scientific Reports 6: 22118.
Google Scholar
Boag, T.H., S.A.F. Darroch, and M. Laflamme. 2016. Ediacaran distributions in space and time: testing assemblage concepts of earliest macroscopic body fossils. Paleobiology 42: 574–594.
Google Scholar
Bobrovskiy, I., J.M. Hope, A.Y. Ivantsov, B.J. Nettersheim, C. Hallmann, and J.J. Brocks. 2018. Ancient steroids establish the Ediacaran fossil Dickinsonia as one of the earliest animals. Science 361: 1246–1249.
Google Scholar
Bobrovskiy, I., J.M. Hope, B.J. Nettersheim, J.K. Volkman, C. Hallmann, and J.J. Brocks. 2020. Algal origin of sponge sterane biomarkers negates the oldest evidence for animals in the rock record. Nature Ecology & Evolution 5: 165–168.
Google Scholar
Boëchat, I.G., A. Krüger, and R. Adrian. 2007. Sterol composition of freshwater algivorous ciliates does not resemble dietary composition. Microbial Ecology 53: 74–81.
Google Scholar
Botting, J.P., and L.A. Muir. 2018. Early sponge evolution: a review and phylogenetic framework. Palaeoworld 27: 1–29.
Google Scholar
Botting, J.P., and B.J. Nettersheim. 2018. Searching for sponge origins. Nature Ecology & Evolution 2: 1685–1686.
Google Scholar
Bottjer, D.J., Z.-J. Yin, F.-C. Zhao, and M.-Y. Zhu. 2020. Comparative taphonomy and phylogenetic signal of phosphatized Weng’an and Kuanchuanpu biotas. Precambrian Research 349: 105408.
Google Scholar
Boucot, A.J., X. Chen, C.R. Scotese, and J.-X. Fan. 2009. Reconstruction of Phanerozoic climate. Beijing: Science Press.
Google Scholar
Brasier, M.D. 1979. The Cambrian radiation event. In The origin of major invertebrate groups, ed. M.R. House, Systematics Association Special Volume 12: 103–159. New York: Academic Press.
Briggs, D.E.G. 2015. The Cambrian explosion. Current Biology 25: R845–R875.
Google Scholar
Briggs, D.E.G., and R.A. Fortey. 1982. The cuticle of aglaspidid arthropods, a red herring in the early history of vertebrates. Lethaia 15: 25–29.
Google Scholar
Briggs, D.E.G., and R.E. Summons. 2014. Ancient biomolecules: their origins, fossilization, and role in revealing the history of life. BioEssays 36: 482–490.
Google Scholar
Buatois, L.A., and M.G. Mángano. 2018. The other biodiversity record: innovations in animal-substrate interactions through geologic time. GSA Today 28: 4–10.
Google Scholar
Buatois, L.A., G.M. Narbonne, M.G. Mángano, N.B. Carmona, and P. Myrow. 2014. Ediacaran matground ecology persisted into the earliest Cambrian. Nature Communications 5: 3544.
Google Scholar
Budd, G.E. 2008. The earliest fossil record of the animals and its significance. Philosophical Transactions of the Royal Society (B: Biological Sciences) 363: 1425–1434.
Google Scholar
Budd, G.E., and S. Jensen. 2000. A critical reappraisal of the fossil record of the bilaterian phyla. Biological Reviews 75: 253–295.
Google Scholar
Budd, G.E., and R.P. Mann. 2020. Survival and selection biases in early animal evolution and a source of systematic overestimation in molecular clocks. Interface Focus 10: 20190110.
Google Scholar
Bush, A.M., R.K. Bambach, and D.H. Erwin. 2011. Ecospace utilization during the Ediacaran radiation and the Cambrian eco-explosion. In Quantifying the evolution of early life, eds. J.D. Shiffbauer, and S.Q. Dornbos, 111–113. Dordrecht: Springer.
Google Scholar
Cai, Y.-P., H. Hua, and X.-L. Zhang. 2013. Tube construction and life mode of the late Ediacaran tubular fossil Gaojiashania cyclus from the Gaojiashan Lagerstätte. Precambrian Research 224: 255–267.
Google Scholar
Cai, Y.-P., S.-H. Xiao, G.-X. Li, and H. Hua. 2019. Diverse biomineralizing animals in the terminal Ediacaran period herald the Cambrian explosion. Geology 47: 380–384.
Google Scholar
Carroll, S.B. 2005. Endless forms most beautiful: the new science of Evo Devo and the making of the animal Kingdom. New York: W.W Norton & Company.
Google Scholar
Carroll, S.B., J.K. Grenier, and S.D. Weatherbee. 2001. From DNA to diversity. Malden, MA: Blackwell Science.
Google Scholar
Carter, J.G., and R.M. Hall. 1990. Polyplacophora, Scaphopoda, Archaeogastropoda and Paragastropoda (Mollusca). Skeletal biomineralisation: patterns, processes and evolutionary trends, short course in geology, vol. 5(2), 297–411. Washington DC: American Geophysical Union.
Google Scholar
Chen, J.-Y., and C. Teichert. 1983. Cambrian cephalopods. Geology 11: 647–650.
Google Scholar
Chen, J.-Y., D.-Y. Huang, Q.-Q. Peng, H.-M. Chi, X.-Q. Wang, and M. Feng. 2003. The first tunicate from the early Cambrian of South China. Proceedings of the National Academy of Sciences of the United States of America 100: 8314–8318.
Google Scholar
Chen, Z., S. Bengtson, C.-M. Zhou, H. Hua, and Z. Yue. 2007. Tube structure and original composition of Sinotubulites: shelly fossils from the late Neoproterozoic in southern Shaanxi, China. Lethaia 41: 37–44.
Google Scholar
Chen, Z., X. Chen, C.-M. Zhou, X.-L. Yuan, and S.-H. Xiao. 2018. Late Ediacaran trackways produced by bilaterian animals with paired appendages. Science Advance 4: eaao6691.
Google Scholar
Chen, Z., C.-M. Zhou, X.-L. Yuan, and S.-H. Xiao. 2019. Death march of a segemnted and trilobate bilaterian elucidates early animal evolution. Nature 573: 412–415.
Google Scholar
Cloud, P.E. 1948. Some problems and patterns of evolution exemplified by fossil invertebrates. Evolution 2: 322–350.
Google Scholar
Conway Morris, S. 1998. The crucible of creation—the Burgess Shale and the rise of animals. Oxford: Oxford University Press.
Google Scholar
Conway Morris, S. 2000. The Cambrian ‘“explosion”’: slow-fuse or megatonnage? Proceedings of the National Academy of Sciences of the United States of America 97: 4426–4429.
Google Scholar
Conway Morris, S. 2003. Life’s solution: Inevitable humans in a lonely Universe. Cambridge: Cambridge University Press.
Google Scholar
Conway Morris, S. 2006. Darwin’s dilemma: the realities of the Cambrian ‘explosion.’ Philosophical Transactions of the Royal Society (B: Biological Sciences) 361: 1069–1083.
Google Scholar
Conway Morris, S., and M. Chen. 1991. Cambroclaves and paracarinachitids, early skeletal problematics from the Lower Cambrian of South China. Palaeontology 34: 357–397.
Google Scholar
Conway Morris, S., and J.S. Peel. 1990. Articulated halkieriids from the Lower Cambrian of north Greenland. Nature 345: 802–805.
Google Scholar
Conway Morris, S., J.S. Crampton, B. Xiao, and A.J. Chapman. 1997. Lower Cambrian cambroclaves (incertae sedis) from Xinjiang, China, with comments on the morphological variability of sclerites. Palaeontology 40: 167–189.
Google Scholar
Currey, D.J., A. Nash, and W. Bonfield. 1982. Calcified cuticle in the stomatopod smashing limb. Journal of Materials Science 17: 1939–1944.
Google Scholar
Daley, A.C., J.B. Antcliffe, H.B. Drage, and S. Pates. 2018. Early fossil record of Euarthropoda and the Cambrian Explosion. Proceedings of the National Academy of Sciences of the United States of America 115: 5323–5331.
Google Scholar
Darroch, S.A.F., et al. 2021. The trace fossil record of the Nama Group, Namibia: exploring the terminal Ediacaran roots of the Cambrian explosion. Earth Science Reviews 212: 103435.
Google Scholar
Darwin, C.R. 1859. On the origin of species by means of natural selection, 1st ed. London: John Murray.
Google Scholar
Darwin, C.R. 1872. The origin of species by means of natural selection, or the preservation of favoured races in the struggle for life, 6th ed. London: John Murray.
Google Scholar
Degens, E.T. 1976. Molecular mechanisms on carbonate, phosphate, and silica deposition in the living cell. In Topics in Current Chemistry, eds. E.T. Degens, W.A.P. Luck, and D.D. Perrin, 1–112. Berlin: Springer.
Google Scholar
Degens, E.T., J. Kazmierczak, and V. Ittekkot. 1985. Cellular response to Ca2+ stress and geological implications. Acta Palaeontologica Polonica 30: 115–135.
Google Scholar
Degens, E.T., J. Kazmierczak, and V. Ittekkot. 1986. Biomineralization and the carbon isotope record. Tschermaks Mineralogische und Petrographische Mitteilungen 35: 117–126.
Google Scholar
Deline, B., J.M. Greenwood, J.W. Clark, M.N. Puttick, K.J. Peterson, and P.C.J. Donoghue. 2018. Evolution of metazoan morphological disparity. Proceedings of the National Academy of Sciences of the United States of America 115: E8909–E8918.
Google Scholar
Dominguez, P., A.G. Jacobson, and R.P.S. Jefferies. 2002. Paired gill slits in a fossil with a calcite skeleton. Nature 417: 841–844.
Google Scholar
Droser, M.L., L.G. Tarhanand, and J.G. Gehling. 2017. The rise of animals in a changing environment: global ecological innovation in the late Ediacaran. Annual Review of Earth and Planetary Sciences 45: 593–617.
Google Scholar
Duda, J.-P., M.J. van Kranendonk, V. Thiel, D. Ionescu, H. Strauss, N. Schäfer, and J. Reitner. 2016. A rare glimpse of Paleoarchean life: geobiology of an exceptionally preserved microbial mat facies from the 3.4 Ga strelley pool formation, Western Australia. PLoS ONE 11: e0147629.
Google Scholar
Dunne, J.A., R.J. Williams, N.D. Martines, R.A. Wood, and D.H. Erwin. 2008. Compilation and network analysis of Cambrian food webs. PLoS Biology 6: e102.
Google Scholar
Elicki, O. 2003. Als das Leben “explodierte” und eine völlig neue Welt entstand: das Kambrium. Biologie in Unserer Zeit 33: 381–389.
Google Scholar
Erwin, D.H. 1991. Metazoan phylogeny and the Cambrian radiation. Trends in Ecology and Evolution 6: 131–134.
Google Scholar
Erwin, D.H. 2007. Disparity: morphological pattern and developmental context. Palaeontology 50: 57–73.
Google Scholar
Erwin, D.H. 2015. A public goods approach to major evolutionary innovations. Geobiology 13: 1–8.
Google Scholar
Erwin, D.H. 2020. The origin of animal body plans: a view from fossil evidence and the regulatory genome. Development 147: dev182899.
Google Scholar
Erwin, D.H., and S.M. Tweedt. 2012. Ecological drivers of the Ediacaran-Cambrian diversification of Metazoa. Evolutionary Ecology 26: 417–433.
Google Scholar
Erwin, D.H., and J.W. Valentine. 2013. The Cambrian explosion, the construction of animal biodiversity. Greenwood Village, Colorado: Roberts and Company.
Google Scholar
Erwin, D.H., J.W. Valentine, and J.J. Sepkoski. 1987. A comparative-study of diversification events—the early Paleozoic versus the Mesozoic. Evolution 41: 1177–1186.
Google Scholar
Erwin, D.H., M. Laflamme, S.M. Tweedt, E.A. Sperling, D. Pisani, and K.J. Peterson. 2011. The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science 334: 1901–1907.
Google Scholar
Fedonkin, M.A., and B.M. Waggoner. 1997. The late Precambrian fossil Kimberella is a mollusk-like bilaterian organism. Nature 388: 868–871.
Google Scholar
Fernández, R., and T. Gabaldón. 2020. Gene gain and loss across the metazoan tree of life. Nature Ecology & Evolution 4: 524–533.
Google Scholar
Fortey, R.A., D.E.G. Briggs, and M.A. Wills. 1996. The Cambrian evolutionary ‘explosion’: decoupling cladogenesis from morphological disparity. Biological Journal of the Linnean Society 57: 13–33.
Google Scholar
Fu, D.-J., G.-H. Tong, T. Dai, W. Liu, Y.-N. Yang, Y. Zhang, L.-H. Cui, L.-Y. Li, H. Yun, Y. Wu, A. Sun, C. Liu, W.-R. Pei, R.R. Gaines, and X.-L. Zhang. 2019. The Qingjiang biota—a Burgess Shale-type fossil Lagerstätte from the early Cambrian of South China. Science 363: 1338–1342.
Google Scholar
Geyer, G. 1998. Die kambrische Explosion. Paläontologische Zeitschrift 72: 7–30.
Google Scholar
Glaessner, N.F. 1984. The dawn of animal life. A biohistorical study. Cambridge: Cambridge University Press.
Google Scholar
Gould, S.J. 1989. Wonderful Life: the Burgess Shale and the nature of history. New York: W.W. Norton & Company.
Google Scholar
Govindan, M., J.D. Hodge, K.A. Brown, and M. Nuñez-Smith. 1993. Distribution of cholesterol in Caribbean marine algae. Steroids 58: 178–180.
Google Scholar
Grotzinger, J.P., W.A. Watters, and A.H. Knoll. 2000. Calcified metazoans in thrombolite-stromatolite reefs of the terminal Proterozoic Nama Group, Namibia. Paleobiology 26: 334–359.
Google Scholar
Guensburg, T.E., and J. Sprinkle. 2001. Ecologic radiation of Cambro-Ordovician echinoderms. In The ecology of the Cambrian radiation, eds. A.Y. Zhuravlev and R. Riding, 428–444. New York: Columbia University Press.
Google Scholar
Han, J., J.-N. Liu, Z.-F. Zhang, X.-L. Zhang, and D.-G. Shu. 2007. Trunk ornament on the palaeoscolecid worms Cricocosmia and Tabelliscolex from the Early Cambrian Chengjiang deposits of China. Acta Palaeontologica Polonica 52: 423–431.
Google Scholar
Han, J., S. Conway Morris, D.-G. Shu, and H. Huang. 2017. Meiofaunal deuterostomes from the basal Cambrian of Shaanxi (China). Nature 542: 228–231.
Google Scholar
Hay, W.W., A. Migdisov, A.N. Balukhovsky, C.N. Wold, S. Flögel, and E. Söding. 2006. Evaporites and the salinity of the ocean during the Phanerozoic: Implications for climate, ocean circulation and life. Palaeogeography, Palaeoclimatology, Palaeoecology 240: 3–46.
Google Scholar
He, T.-C., M.-Y. Zhu, B.J.W. Mills, P.M. Wynn, A.Y. Zhuravlev, R. Tostevin, P.A.E. Pogge von Strandmann, A.-H. Yang, S.W. Poulton, and G.A. Shields. 2019. Possible links between extreme oxygen perturbations and the Cambrian radiation of animals. Nature Geoscience 12: 468–474.
Google Scholar
Hearing, T.W., T.H.P. Harvey, M. Williams, M.J. Leng, A.L. Lamb, P.R. Wilby, S.E. Gabbott, A. Pohl, and Y. Donnadieu. 2018. An early Cambrian greenhouse climate. Science Advances 4: eaar5690.
Google Scholar
Hoare, R.D., and J.J. Pojeta. 2006. Ordovician Polyplacophora (mollusca) from North America. Journal of Paleontology 80: 1–27.
Google Scholar
Hou, X.-G., David J. Siveter, Derek J. Siveter, R.J. Aldridge, P.-Y. Cong, S.E. Gabbott, X.-Y. Ma, M.A. Purnell, and M. Williams. 2017. The Cambrian fossils of the Chengjiang, China: the flowering of early animal life, 2nd ed. Oxford: Wiley Blackwell.
Google Scholar
Hua, H., Y.-P. Cai, X. Min, S. Chai, Q.-K. Dai, and Z.-H. Cui. 2020. Ecological diversity in terminal Ediacaran Gaojiashan biota. Earth Science Frontiers 27: 28–46.
Google Scholar
Hughes, M., S. Gerber, and M.A. Wills. 2013. Clades reach highest morphologic disparity early in their evolution. Proceedings of the National Academy of Sciences of the United States of America 110: 13875–13879.
Google Scholar
Jackson, D.J., L. Macis, J. Reitner, B.M. Degnan, G. Worheide, and G. Woerheide. 2007. Sponge paleogenomics reveals an ancient role for carbonic anhydrase in skeletogenesis. Science 316: 1893–1895.
Google Scholar
Jackson, D.J., L. Macis, J. Reitner, and G. Wörheide. 2011. A horizontal gene transfer supported the evolution of an early metazoan biomineralization. BMC Evolutionary Biology 11: 238.
Google Scholar
Jensen, S. 2003. The Proterozoic and earliest Cambrian trace fossil record: patterns, problems and perspectives. Integrative and Comparative Biology 43: 219–228.
Google Scholar
Jensen, S., M.L. Droser, and J.G. Gehling. 2005. Trace fossil preservation and the early evolution of animals. Palaeogeography, Palaeoclimatology, Palaeoecology 220: 19–29.
Google Scholar
Kazmierczak, J., V. Ittekkot, and E.T. Degens. 1985. Biocalcification through time: environmental challenge and cellular response. Paläontologische Zeitschrift 59: 15–33.
Google Scholar
Khomentovsky, V.V., and G.A. Karlova. 2005. The Tommotian stage base as the Cambrian lower boundary in Siberia. Stratigraphy and Geological Correlation 13: 26–40.
Google Scholar
Knauth, L.P. 1998. Salinity history of the earth’s early ocean. Nature 359: 554–555.
Google Scholar
Kodner, R.B., R.E. Summons, A. Pearson, N. King, and A.H. Knoll. 2008. Sterols in a unicellular relative of the metazoans. Proceedings of the National Academy of Sciences of the United States of America 105: 9897–9902.
Google Scholar
Kouchinsky, A.V. 2000. Skeletal microstructure of hyoliths from the early Cambrian of Siberia. Alcheringa 24: 65–81.
Google Scholar
Kouchinsky, A.V. 2001. Mollusks, hyoliths, stenothecoids, and coeloscleritophorans. In The ecology of the Cambrian radiation, eds. A.Y. Zhuravlev and R. Riding, 326–349. New York: Columbia University Press.
Google Scholar
Kouchinsky, A.V., and S. Bengtson. 2002. The tubewall of Cambrian anabaritids. Acta Palaeontologica Polonica 47: 431–444.
Google Scholar
Kouchinsky, A.V., S. Bengtson, B. Runnegar, C. Skovsted, M. Steiner, and M. Vendrasco. 2012. Chronology of early Cambrian biomineralization. Geological Magazine 149: 221–251.
Google Scholar
Kruse, P.D., A.Y. Zhuravlev, and N.P. James. 1995. Primordial metazoan-calcimicrobial reefs: Tommotian (Early Cambrian) of the Siberian Platform. Palaios 10: 291–321.
Google Scholar
Kupriyanova, E.K., T.A. Mcdonald, and G.W. Rouse. 2010. Phylogenetic relationships within Serpulidae (Sabellida, Annelida) inferred from molecular and morphological data. Zoologica Scripta 35: 421–439.
Google Scholar
Landing, E., and B. Kröger. 2009. The oldest cephalopods from East Laurentia. Journal of Paleontology 83: 123–127.
Google Scholar
Landing, E., A. English, and J.D. Keppie. 2010. Cambrian origin of all skeletalized metazoan phyla—discovery of earth’s oldest bryozoans (Upper Cambrian, southern Mexico). Geology 38: 547–550.
Google Scholar
Laumer, C.E., R. Fernandez, S. Lemer, D. Combosch, K.M. Kocot, A. Riesgo, S.C.S. Andrade, W. Sterrer, M.V. Sørensen, and G. Giribet. 2019. Revisiting metazoan phylogeny with genomic sampling of all phyla. Proceedings of the Royal Society (Biological Sciences) 286: 20190831.
Google Scholar
Lefebvre, B. 2007. Early Palaeozoic palaeobiogeography and palaeoecology of stylophoran echinoderms. Palaeogeography, Palaeoclimatology, Palaeoecology 245: 156–199.
Google Scholar
Lepot, K. 2020. Signatures of early microbial life from the Archean (4 to 2.5 Ga) eon. Earth Science Reviews 209: 103296.
Google Scholar
Levinton, J.S. 1992. The big bang of animal evolution. Scientific American 267: 84.
Google Scholar
Levinton, J.S. 2001. Genetics, paleontology, and macroevolution, 2nd ed. Cambridge: Cambridge University Press.
Google Scholar
Li, G.-X., M. Steiner, X.-J. Zhu, A.-H. Yang, H.-F. Wang, and B.D. Erdtmann. 2007. Early Cambrian metazoan fossil record of South China: generic diversity and radiation patterns. Palaeogeography, Palaeoclimatology, Palaeoecology 254: 229–249.
Google Scholar
Li, C., C.-S. Jin, N.J. Planavsky, T.J. Algeo, M. Cheng, X.-L. Yang, Y.-L. Zhao, and S.-C. Xie. 2017. Coupled oceanic oxygenation and metazoan diversification during the early–middle Cambrian? Geology 45: 743–746.
Google Scholar
Lin, J.P., A.Y. Ivantsov, and D.E.G. Briggs. 2010. The cuticle of the enigmatic arthropod Phytophilaspis and biomineralization in Cambrian arthropods. Lethaia 44: 344–349.
Google Scholar
Liu, Y., X.-L. Zhang, W. Liu, and Q. Zhang. 2008. New bradoriids from the lower Cambrian Yanwangbian formation of southern Shaanxi Province, Central China. Palaeoworld 17: 102–107.
Google Scholar
Liu, A.G., J.J. Matthews, L.R. Menon, D. McIlroy, and M.D. Brasier. 2014a. Haootia quadriformis n. gen., n. sp., interpreted as a muscular cnidarian impression from the late Ediacaran Period (approx. 560 Ma). Proceedings of the Royal Society (Biological Sciences) 281: 20141202.
Google Scholar
Liu, Y.-H., S.-H. Xiao, T.Q. Shao, J. Broce, and H.-Q. Zhang. 2014b. The oldest known priapulid-like scalidophoran animal and its implications for the early evolution of cycloneuralians and ecdysozoans. Evolution & Development 16: 155–165.
Google Scholar
Love, G.D., and J.A. Zumberge. 2021. Emerging patterns in Proterozoic lipid biomarker records: Implications for marine biospheric evolution and the ecological rise of eukaryotes. In Elements in geochemical tracers in earth system science, eds. T. Lyons, A. Turchyn, and C. Reinhard, 1–75. Cambridge: Cambridge University Press.
Google Scholar
Love, G.D., E. Grosjean, C. Stalvies, D.A. Fike, J.P. Grotzinger, A.S. Bradly, A.E. Kelly, M. Bhatia, W. Meredith, C.E. Snape, S.A. Bowring, D.J. Condon, and R.E. Summons. 2009. Fossil steroids record the appearance of Demospongiae during the Cryogenian period. Nature 457: 718–721.
Google Scholar
Lowenstam, H.A., and D. Abbott. 1975. Vaterite: a mineralization product of the hard tissues of a marine organism (Ascidiacea). Science 188: 363–365.
Google Scholar
Lowenstam, H.A., and S. Weiner. 1992. Phosphatic shell plate of the barnacle Ibla (Cirripedia): a bone-like structure. Proceedings of the National Academy of Sciences of the United States of America 89: 10573–10577.
Google Scholar
Lowenstein, T.K., M.N. Timofeeff, S.T. Brennan, L.A. Hardie, and R.V. Demicco. 2001. Oscillations in Phanerozoic seawater chemistry: evidence from fluid inclusions. Science 294: 1086–1088.
Google Scholar
Lowenstein, T.K., L.A. Hardie, M.N. Timofeeff, and R.V. Demicco. 2003. Secular variation in seawater chemistry and the origin of calcium chloride basinal brines. Geology 31: 857–860.
Google Scholar
Lozano-Fernandez, J.R., A.R. Carton, M.N. Tanner, M. Puttick, J. Blaxter, J. Vinther, G. Olesen, G.D. Edgecombe. Giribet, and D. Pisani. 2016. A molecular palaeobiological exploration of arthropod terrestrialization. Philosophical Transaction of the Royal Society (B: Biological Sciences) 371: 20150133.
Google Scholar
Maletz, J. 2019. Tracing the evolutionary origins of the Hemichordata (Enteropneusta and Pterobranchia). Palaeoworld 28: 58–72.
Google Scholar
Maldegem, L.M. van, B.J. Nettersheim, A. Leider, J.J. Brocks, P. Adam, P. Schaeffer, and C. Hallmann. 2020. Geological alteration of Precambrian steroids mimics early animal signatures. Nature Ecology & Evolution 5: 169–173.
Google Scholar
Maloof, A., S.M. Porter, J.L. Moores, F.O. Dudas, S.A. Bowring, J.A. Higgins, D.A. Fike, and M.P. Eddy. 2010. The earliest Cambrian record of animals and ocean geochemical change. Geological Society of America Bulletin 122: 1731–1774.
Google Scholar
Mángano, M.G., and L.A. Buatois. 2014. Decoupling of body-plan diversification and ecological structuring during the Ediacaran-Cambrian transition: evolutionary and geobiological feedbacks. Proceedings of the Royal Society (B: Biological Sciences) 281: 20140038.
Google Scholar
Mángano, M.G., and L.A. Buatois. 2016. The Cambrian explosion. In The trace fossil record of major evolutionary events, eds. M.G. Mángano, and L.A. Buatois. Topics in Geobiology 39: 73–126.
Google Scholar
Mángano, M.G., and L.A. Buatois. 2020. The rise and early evolution of animals: where do we stand from a trace-fossil perspective? Interface Focus 10: 20190103.
Google Scholar
Marshall, C.R. 2006. Explaining the Cambrian ‘“explosion”’ of animals. Annual Review of Earth and Planetary Science 34: 355–384.
Google Scholar
Marusin, V.V., and D.V. Grazhdankin. 2018. Enigmatic large-sized tubular fossils from the Terreneuvian of Arctic Siberia. PalZ. Paläontologische Zeitschrift 92: 557–560.
Google Scholar
McIlroy, D., and H. Szaniawski. 2010. A lower Cambrian protoconodont apparatus from the Placentian of southeastern Newfoundland. Lethaia 33: 95–102.
Google Scholar
Miller, J.F. 1984. Cambrian and earliest Ordovician conodont evolution, biofacies, and provincialism. Special Paper of the Geological Society of America 196: 43–68.
Google Scholar
Mißbach, H., J.-P. Duda, A.M. van den Kerkhof, V. Lüders, A. Pack, J. Reitner, and V. Thiel. 2021. Ingredients for microbial life preserved in 3.5 billion-year-old fluid inclusions. Nature Communications 12: 1101.
Google Scholar
Müller, K.J. 1979. Phosphatocopine ostracodes with preserved appendages from the upper Cambrian of Sweden. Lethaia 12: 1–27.
Google Scholar
Müller, W.E.G., X.H. Wang, S.I. Belikov, and H.C. Schröder. 2008. Formation of siliceous spicules in demosponges: example suberites domuncula. In Handbook of biomineralization: biological aspects and structure formation, ed. E. Bäuerlein, 59–82. Weinheim: Wiley-VCH.
Google Scholar
Murdock, D.J.E. 2020. The ‘biomineralization toolkit’ and the origin of animal skeletons. Biological Reviews 95: 1372–1392.
Google Scholar
Nash, J.M. 1995. When life exploded. Time Magazine 146: 23.
Google Scholar
Nettersheim, B.J., J.J. Brocks, A. Schwelm, and F. Not. 2019. Putative sponge biomarkers in unicellular Rhizaria question an early rise of animals. Nature Ecology & Evolution 3: 577–581.
Google Scholar
Nursall, J. 1959. Oxygen as a prerequisite to the origin of the Metazoa. Nature 183: 1170–1172.
Google Scholar
Parkhaev, P. 2017. Origin and the early evolution of the phylum Mollusca. Paleontological Journal 51: 91–112.
Google Scholar
Paterson, J.R., G.D. Edgecombe, and M.S.Y. Lee. 2019. Trilobite evolutionary rates constrain the duration of the Cambrian Explosion. Proceedings of the National Academy of Sciences of the United States of America 116: 4394–4399.
Google Scholar
Payne, J.L., A.G. Boyer, J.H. Brown, S. Finnegan, M. Kowalewski, R.A. Krause Jr., S.K. Lyons, C.R. McClain, D.W. McShea, P.M. Novack-Gottshall, F.A. Smith, J.A. Stempien, and S.-C. Wang. 2009. Two-phase increase in the maximum size of life over 3.5 billion years reflects biological innovation and environmental opportunity. Proceedings of the National Academy of Sciences of the United States of America 106: 24–27.
Google Scholar
Pecoits, E., K.O. Konhauser, N.R. Aubet, L.M. Heaman, G. Veroslavsky, R.A. Stern, and M.K. Gingras. 2012. Bilaterian burrows and grazing behavior at >585 million years ago. Science 336: 1693–1696.
Google Scholar
Peel, J.S. 2006. Scaphopodization in palaeozoic molluscs. Palaeontology 49: 1357–1364.
Google Scholar
Peng, S.-C., L.E. Babcock, and R.A. Ahlberg. 2020. The Cambrian period. In Geologic time scale 2020, eds. F.M. Gradstein, J.G. Ogg, M.D. Schmitz, and G.M. Ogg, 565–629. Amsterdam: Elsevier.
Google Scholar
Peters, S.E., and R.R. Gaines. 2012. Formation of the ‘Great Unconformity’ as a trigger for the Cambrian Explosion. Nature 484: 363–366.
Google Scholar
Pett, W., M. Adamski, M. Adamska, W.R. Francis, M. Eitel, D. Pisani, and G. Wörheide. 2019. The role of homology and orthology in the phylogenomic analysis of metazoan gene content. Molecular Biology and Evolution 36: 643–649.
Google Scholar
Pflug, H.D. 1972. Systematik der jung-präkambrischen Petalonamae. Paläontologische Zeitschrift 46: 56–67.
Google Scholar
Pflug, H.D. 1974. Vor- und Frühgeschichte der Metazoa. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 145: 328–337.
Google Scholar
Philippe, H., A.J. Poustka, M. Chiodin, K.J. Hoff, C. Dessimoz, B. Tomiczek, P.H. Schiffer, S. Müller, D. Domman, M. Horn, et al. 2019. Mitigating anticipated effects of systematic errors supports sister-group relationship between xenacoelomorpha and ambulacraria. Current Biology 29: 1818–1826.
Google Scholar
Pisani, D., and A.G. Liu. 2015. Animal evolution: only rocks can set the clock. Current Biology 25: R1079–R1081.
Google Scholar
Porter, S.M. 2007. Seawater chemistry and early carbonate biomineralization. Science 316: 1302.
Google Scholar
Reis, M. dos, Y. Thawornwattana, K. Angelis, M.J. Telford, P.C. Donoghue, and Z. Yang. 2015. Uncertainty in the timing of origin of animals and the limits of precision in molecular timescales. Current Biology 25: 2939–2950.
Google Scholar
Reitner, J., and D. Mehl. 1995. Early Palaozoic diversification of sponges: new data and evidence. Geologisch-Paläontologische Mitteilungen Innsbruck 20: 335–347.
Google Scholar
Reitner, J., and D. Mehl. 1996. Monophyly of the Porifera. Verhandlungen des Naturwissenschaftlichen Vereins in Hamburg 36: 5–32.
Google Scholar
Rigby, J.K. 1986. Sponges of the Burgess Shale (middle Cambrian), British Columbia. Palaeontographica Canadiana 2: 1–105.
Google Scholar
Rota-Stabelli, O., A.C. Daley, and D. Pisani. 2013. Molecular timetrees reveal a Cambrian colonization of land and a new scenario for ecdysozoan evolution. Current Biology 23: 392–398.
Google Scholar
Rozanov, A.Y., and A.Y. Zhuravlev. 1992. The lower Cambrian fossil record of the Soviet Union. In Origin and early evolution of the Metazoa, eds. J.H. Lipps and P.W. Signor, 205–282. New York & London: Plenum Press.
Google Scholar
Rücklin, M., P.C.J. Donoghue, Z. Johanson, K. Trinajstic, F. Marone, and M. Stampanoni. 2012. Development of teeth and jaws in the earliest jawed vertebrates. Nature 491: 748–751.
Google Scholar
Runnegar, B. 1982. The Cambrian Explosion—animals or fossils. Journal of the Geological Society of Australia 29: 395–411.
Google Scholar
Runnegar, B. 1985. Shell microstructure of Cambrian molluscs replicated by calcite. Alcheringa 9: 245–257.
Google Scholar
Runnegar, B., and C. Bentley. 1983. Anatomy, ecology and affinities of the Australian early Cambrian bivalve Pojetaia runnegari Jell. Journal of Paleontology 57: 73–92.
Google Scholar
Schiffbauer, J.D. 2016. The age of tubes: a window into biological transition at the Precambrian-Cambrian boundary. Geology 44: 975–976.
Google Scholar
Schiffbauer, J.D., J.W. Huntley, G.R. O’Neil, S.A.F. Darroch, M. Laflamme, and Y. Cai. 2016. The latest Ediacaran Wormworld fauna: setting the ecological stage for the Cambrian explosion. GSA Today 26: 4–11.
Google Scholar
Schopf, J.W. 2000. Solution to Darwin’s dilemma: discovery of the missing Precambrian record of life. Proceedings of the National Academy of Sciences of the United States of America 97: 6947–6953.
Google Scholar
Scotese, C.R., H.-J. Song, J.W.B. Mills, and D.G. van der Meer. 2021. Phanerozoic paleotemperatures: the earth’s changing climate during the last 540 million years. Earth Science Reviews 215: 103503.
Google Scholar
Sdzuy, K. 1960. Zur Wende Präkambrium/Kambrium. Paläontologische Zeitschrift 34: 154–160.
Google Scholar
Seilacher, A. 1956. Der Beginn des Kambriums als biologische Wende. Neues Jahrbuch für Geologie und Paläontologische, Abhandlungen 103: 155–180.
Google Scholar
Seilacher, A. 1989. Vendozoa: organismic construction in the Proterozoic biosphere. Lethaia 22: 229–239.
Google Scholar
Seilacher, A. 1992. Vendobionta and Psammocorallia: lost constructions of the Precambrian evolution. Journal of the Geological Society of London 149: 607–613.
Google Scholar
Seilacher, A. 1997. The meaning of the Cambrian explosion. In The Cambrian explosion and the fossil record, eds. J.-Y. Chen and A. Seilacher. Bulletin of National Museum of Natural Science 10: 1–9.
Google Scholar
Seilacher, A. 1999. Biomat-related lifestyles in the Precambrian. Palaios 14: 86–93.
Google Scholar
Seilacher, A. 2007. The nature of vendobionts. In The rise and fall of the Ediacaran biota, eds. P. Vichers-Rich and P. Komarower, 387–397. London: Geological Society.
Google Scholar
Shen, Y.-A., R. Buick, and D.E. Canfield. 2001. Isotopic evidence for microbial sulfate reduction in the early Archaean era. Nature 410: 77–81.
Google Scholar
Shu, D.-G. 2008. Cambrian explosion: birth of animal tree. Gondwana Research 14: 219–240.
Google Scholar
Shu, D.-G., and J. Han. 2020. The core value of Chengjiang fauna: the formation of the animal kingdom and the birth of basic human organs. Earth Science Frontiers 27: 382–412.
Google Scholar
Shu, D.-G., Y. Isozaki, X.-L. Zhang, J. Han, and S. Maruyama. 2014. The birth and evolution of metazoans. Gondwana Research 25: 884–895.
Google Scholar
Simkiss, K. 1977. Biomineralization and detoxification. Calcified Tissue Research 24: 199–200.
Google Scholar
Simpson, G.G. 1944. Tempo and mode in evolution. New York: Columbia University Press.
Google Scholar
Skovsted, C.B. 2003. Mobergellans (Problematica) from the Cambrian of Greenland, Siberia and Kazakhstan. Paläontologische Zeitschrift 77: 429–443.
Google Scholar
Skovsted, C.B., and L.E. Holmer. 2003. The early Cambrian (Botomian) stem group brachiopod Mickwitzia from Northeast Greenland. Acta Palaeontologica Polonica 48: 1–20.
Google Scholar
Skovsted, C.B., and J.S. Peel. 2011. Hyolithellus in life position from the lower Cambrian of North Greenland. Journal of Paleontology 85: 37–47.
Google Scholar
Skovsted, C.B., G.A. Brock, J.R. Paterson, L.E. Holmer, and G.E. Budd. 2008. The scleritome of Eccentrotheca from the lower Cambrian of South Australia: Lophophorate affinities and implications for tommotiid phylogeny. Geology 36: 171–174.
Google Scholar
Smith, M.P., and D.A.T. Harper. 2013. Causes of the Cambrian explosion. Science 341: 1355–1356.
Google Scholar
Sorauf, J.E., and M. Savarese. 1995. A lower Cambrian coral from South Australia. Palaeontology 38: 757–770.
Google Scholar
Sperling, E.A., and R.G. Stockey. 2018. The temporal and environmental context of early animal evolution: considering all the ingredients of an “explosion.” Integrative and Comparative Biology 58: 605–622.
Google Scholar
Sperling, E.A., and J. Vinther. 2010. A placozoan affinity for Dickinsonian and the evolution of the late Proterozoic metazoan feeding modes. Evolution and Development 12: 201–209.
Google Scholar
Sperling, E.A., J.M. Robinson, D. Pisani, and K.J. Peterson. 2010. Where is the glass? Biomarkers, molecular clocks, and microRNAs suggest a 200-Myr missing Precambrian fossil record of siliceous sponge spicules. Geobiology 8: 24–36.
Google Scholar
Sperling, E.A., C.J. Wolock, A.S. Morgan, B.C. Gill, M. Kunzmann, G.P. Halverson, F.A. Macdonald, A.H. Knoll, and D.T. Johnston. 2015. Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation. Nature 523: 451–451.
Google Scholar
Steiner, M., G.-X. Li, Y. Qian, M.-Y. Zhu, and B.D. Erdtmann. 2007. Neoproterozoic to early Cambrian small shelly fossil assemblages and a revised biostratigraphic correlation of the Yangtze Platform (China). Palaeogeography, Palaeoclimatology, Palaeoecology 254: 67–99.
Google Scholar
Summons, R.E., and D.H. Erwin. 2018. Chemical clues to the earliest animal fossils. Science 361: 1198–1199.
Google Scholar
Tashiro, T., A. Ishida, M. Hori, M. Igisu, M. Koike, P. Méjean, N. Takahata, Y. Sano, and T. Komiya. 2017. Early trace of life from 3.95 Ga sedimentary rocks in Labrador, Canada. Nature 549: 516–518.
Google Scholar
Taylor, P.D., and M.J. Weedon. 2000. Skeletal ultrastructure and phylogeny of cyclostome bryozoans. Zoological Journal of the Linnean Society 128: 337–399.
Google Scholar
Taylor, P.D., B. Berning, and M.A. Wilson. 2013. Reinterpretation of the Cambrian ‘Bryozoan’ Pywackia as an octocoral. Journal of Paleontology 87: 984–990.
Google Scholar
Teigler, D.J., and K.M. Towe. 1975. Microstructure and composition of the trilobite exoskeleton. Fossils and Strata 4: 137–149.
Google Scholar
Topper, T.P., and C.B. Skovsted. 2017. Keeping a lid on it: muscle scars and the mystery of the Mobergellidae. Zoological Journal of the Linnean Society 180: 717–731.
Google Scholar
Topper, T.P., J.-F. Guo, S. Clausen, C.B. Skovsted, and Z.-F. Zhang. 2019. A stem group echinoderm from the basal Cambrian of China and the origins of Ambulacraria. Nature Communications 10: 1366.
Google Scholar
Topper, T.P., J. Guo, S. Clausen, C.B. Skovsted, and Z.-F. Zhang. 2020. Reply to ‘Re-evaluating the phylogenetic position of the enigmatic early Cambrian deuterostome Yanjiahella’. Nature Communications 11: 1287.
Google Scholar
Treves, K., W. Traub, S. Weiner, and L. Addadi. 2003. Aragonite formation in the chiton (Mollusca) girdle. Helvetica Chimica Acta 86: 1101–1112.
Google Scholar
Tynan, M.C. 1983. Coral-like microfossils from the lower Cambrian of California. Journal of Paleontology 57: 1188–1211.
Google Scholar
Ushatinskaya, G.T., and Ya..E.. Malakhovskaya. 2006. The first brachiopods with a carbonate skeleton: appearance, migration, shell wall structure. In The evolution of biosphere and biodiversity, ed. S.V. Rozhnov, 177–192. Moscow: Tovarishchestvo nauchnykh izdaniy KMK.
Google Scholar
Ushatinskaya, G.T., and A.Y. Zhuravlev. 1994. On the problem of the skeletal biomineralisation (brachiopod example). Doklady Akademii Nauk 337: 231–234. (in Russian).
Google Scholar
Valentine, J.W. 2004. On the origin of phyla. Chicago and London: The University of Chicago Press.
Google Scholar
Valentine, J.W., and D.H. Erwin. 1987. Interpreting great developmental experiments: the fossil record. In Development as an evolutionary process, ed. R.A. Raff, 71–107. New York: A. R. Liss.
Google Scholar
Vermeij, G.J. 1990. The origin of skeletons. Palaios 4: 585–589.
Google Scholar
Vinn, O. 2006. Possible cnidarian affinities of Torellella (Hyolithelminthes, upper Cambrian, Estonia). Paläontologische Zeitschrift 80: 84–89.
Google Scholar
Vinther, J., and C. Nielsen. 2005. The early Cambrian Halkieria is a mollusc. Zoologica Scripta 34: 81–89.
Google Scholar
Vittori, M., V. Srot, K. Žagar, B. Bussmann, P.A. van Aken, M. Čeh, and J. Štrus. 2016. Axially aligned organic fibers and amorphous calcium phosphate form the claws of a terrestrial isopod (Crustacea). Journal of Structural Biology 195: 227–237.
Google Scholar
Waggoner, B.M. 2003. The Ediacaran biotas in space and time. Integrative and Comparative Biology 43: 104–113.
Google Scholar
Watson, T. 2020. The bizarre species that are rewriting animal evolution. Nature 586: 662–665.
Google Scholar
Wei, G.-Y., N.J. Planavsky, T.-C. He, F.-F. Zhang, R.-G. Stockey, D.-B. Cole, Y.-B. Lin, and H.-F. Ling. 2021. Global marine redox evolution from the late Neoproterozoic to the early Paleozoic constrained by the integration of Mo and U isotope records. Earth-Science Reviews 214: 103506.
Google Scholar
Weiner, S., and P.M. Dove. 2003. An overview of biomineralization processes and the problem of the vital effect. Reviews in Mineralogy and Geochemistry 54: 1–29.
Google Scholar
Whittington, H.B. 1979. Early arthropods, their appendages and relationships. In The origin of major invertebrate groups, systematics association special volume, vol. 12, ed. M.R. House, 253–268. New York: Academic Press.
Google Scholar
Wolfe, J.M. 2017. Metamorphosis is ancestral for crown euarthropods, and evolved in the Cambrian or earlier. Integrative and Comparative Biology 57: 499–509.
Google Scholar
Wood, R.A. 2011. Paleoecology of the earliest skeletal metazoan communities: implications for early biomineralisation. Earth-Science Reviews 106: 184–190.
Google Scholar
Wood, R., and D.H. Erwin. 2017. Innovation not recovery: dynamic redox promotes metazoan radiations. Biological Reviews 93: 863–873.
Google Scholar
Wood, R., and A. Penny. 2018. Substrate growth dynamics and biomineralization of an Ediacaran encrusting poriferan. Proceedings of the Royal Society (B: Biological Sciences) 285: 20171938.
Google Scholar
Wood, R., and A.Y. Zhuravlev. 2012. Escalation and ecological selectively of mineralogy in the Cambrian radiation of skeletons. Earth-Science Reviews 115: 249–261.
Google Scholar
Wood, R.A., J.P. Grotzinger, and J.A.D. Dickson. 2002. Proterozoic modular biomineralized metazoan from the Nama Group, Namibia. Science 296: 2383–2386.
Google Scholar
Wray, G.A. 2015. Molecular clocks and the early evolution of metazoan nervous systems. Philosophical Transactions of the Royal Society (Biological Sciences) 370: 20150046.
Google Scholar
Wu, Y., D.-J. Fu, J.-X. Ma, W.-L. Lin, A. Sun, X.-L. Zhang. 2021a. Houcaris gen. nov. from the early Cambrian (Stage 3) Chengjiang Lagerstätte expanded the palaeogeographical distribution of tamisiocaridids (Panarthropoda: Radiodonta). PalZ. Paläontologische Zeitschrift. https://doi.org/10.1007/s12542-020-00545-4.
Wu, Y., J.-X. Ma, W.-L. Lin, A. Sun, X.-L. Zhang, and D.-J. Fu. 2021b. New anomalocaridids (Panarthropoda: Radiodonta) from the lower Cambrian Chengjiang Lagerstätte: biostratigraphic and paleobiogeographic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 569: 110333.
Google Scholar
Xiao, S.-H., and A.H. Knoll. 2000. Phosphatized animal embryos from the Neoproterozoic Doushantuo formation at Weng’an, Guizhou, South China. Journal of Paleontology 74: 767–788.
Google Scholar
Xiao, S.-H., and M. Laflamme. 2009. On the eve of animal radiation: phylogeny, ecology, and evolution of the Ediacara biota. Trends in Ecology and Evolution 24: 31–40.
Google Scholar
Yang, B., M. Steiner, M.Y. Zhu, G.X. Li, J.N. Liu, and P.J. Liu. 2016. Transitional Ediacaran-Cambrian small skeletal fossil assemblages from South China and Kazakhstan: implications for chronostratigraphy and metazoan evolution. Precambrian Research 285: 202–215.
Google Scholar
Yang, B., M. Steiner, J.D. Schiffbauer, T. Selly, X.W. Wu, C. Zhang, and P.J. Liu. 2020. Ultrastructure of Ediacaran cloudinids suggests diverse taphonomic histories and affinities with non-biomineralized annelids. Scientific Reports 10: 535.
Google Scholar
Yin, Z.-J., K. Vargas, J. Cunningham, S. Bengtson, M.-Y. Zhu, F. Marone, and P. Donoghue. 2019. The early Ediacaran Caveasphaera foreshadows the evolutionary origin of animal-like embryology. Current Biology 29: 4307–4314.
Google Scholar
Yun, H., X.-L. Zhang, G.A. Brock, L.-Y. Li, and G.-X. Li. 2021. Biomineralization of the Cambrian chancelloriids. Geology. https://doi.org/10.1130/G48428.1.
Article
Google Scholar
Zamora, S., D.F. Wright, R. Mooi, B. Lefebvre, T.E. Guensburg, P. Gorzelak, B. David, C.D. Sumrall, S.R. Cole, A.W. Hunter, J. Sprinkle, J.R. Thompson, T.A.M. Ewin, O. Fatka, E. Nardin, M. Reich, M. Nohejlová, and I.A. Raman. 2020. Re-evaluating the phylogenetic position of the enigmatic early Cambrian deuterostome Yanjiahella. Nature Communications 11: 1286.
Google Scholar
Zeng, H., F.-C. Zhao, K.-C. Niu, M.-Y. Zhu, and D.-Y. Huang. 2020. An early Cambrian euarthropod with radiodont-like raptorial appendages. Nature 588: 101–105.
Google Scholar
Zhan, R.-B. 2018. Evolution of Early Paleozoic marine faunas. In Life evolution and environments, eds. J.-Y. Rong, X.-L. Yuan, R.-B. Zhan, and T. Deng, 116–143. Hefei: China University of Science and Technology. (in Chinese).
Google Scholar
Zhang, X.-L., and L.-H. Cui. 2016. Oxygen requirements for the Cambrian explosion. Journal of Earth Science 27: 187–195.
Google Scholar
Zhang, X.-L., and J. Reitner. 2006. A fresh look at Dickinsonian: removing it from the Vendobionta. Acta Geologica Sinica 80: 636–642.
Google Scholar
Zhang, X.-L., and D.-G. Shu. 2014. Causes and consequences of the Cambrian explosion. Science China-Earth Sciences 57: 930–942.
Google Scholar
Zhang, Y., and X.-L. Zhang. 2017. New Megasphaera-like microfossils reveal their reproductive strategies. Precambrian Research 300: 141–150.
Google Scholar
Zhang, X.-L., D.-G. Shu, J. Han, Z.-F. Zhang, J.-N. Liu, and D.-J. Fu. 2014. Triggers for the Cambrian explosion: hypotheses and problems. Gondwana Research 25: 896–909.
Google Scholar
Zhang, X.-L., P. Ahlberg, L.E. Babcock, D.K. Choi, G. Geyer, R. Gozalo, J.S. Hollingsworth, G.-X. Li, E.B. Naimark, T. Pegel, M. Steiner, T. Wotte, and Z.-F. Zhang. 2017b. Challenges in defining the base of Cambrian series 2 and stage 3. Earth-Science Reviews 172: 124–139.
Google Scholar
Zhang, X.-L., W. Liu, Y. Isozaki, and T. Sato. 2017a. Centimeter-wide worm-like fossils from the lowest Cambrian of South China. Scientific Reports 7: 14504.
Google Scholar
Zhu, M.-Y., A.Y. Zhuravlev, R.A. Wood, F.-C. Zhao, and S.S. Sukhov. 2017. A deep root for the Cambrian explosion: implications of new bio- and chemostratigraphy from the Siberian Platform. Geology 45: 459–462.
Google Scholar
Zhu, M.-Y., F.-C. Zhao, Z.-J. Yin, H. Zeng, and G.-X. Li. 2019. The Cambrian explosion: advances and perspectives from China. Science China Earth Sciences 49: 1455–1490.
Google Scholar
Zhuravlev, A.Y. 1993. Were Ediacaran Vendobionta multicellulars? Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 103: 155–180.
Google Scholar
Zhuravlev, A.Y., and R. Wood. 2008. Eve of biomineralization: controls on skeletal mineralogy. Geology 36: 923–926.
Google Scholar
Zhuravlev, A.Y., and R. Wood. 2020. Dynamic and synchronous changes in metazoan body size during the Cambrian Explosion. Scientific Reports 10: 6784.
Google Scholar
Zumberge, J.A., G.D. Love, P. Cárdenas, E.A. Sperling, S. Gunasekera, M. Rohrssen, E. Grosjean, J.P. Grotzinger, and R.E. Summons. 2018. Demosponge steroid biomarker 26-methylstigmastane provides evidence for Neoproterozoic animals. Nature Ecology & Evolution 2: 1709–1714.
Google Scholar