Skip to main content
Log in

Investigation on Polymer Hybrid Composite Through CO2 Laser Machining for Precise Machining Conditions

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

Laser machining is a technique capable of achieving extremely precise material cutting using appropriate parameters. The research proposes a new approach for producing biodegradable hybrid composites composed of Polylactic acid (PLA), bamboo particles (BP), and montmorillonite (MMT) clay using an innovative solvent-free stir-casting technique optimised for maximum efficiency. The primary objective is to evaluate the machinability of the resultant PLA/BP/clay hybrid polymer composite in-depth, emphasising important quality characteristics such as surface roughness, kerf angle, and material removal rate. The key machining parameters under consideration are laser power, scan speed, and gas pressure. This evaluation encompassed the utilisation of Analysis of Variance (ANOVA) to comprehend the extent of impact these process parameters have on the quality characteristics. Additionally, an interactive model was developed for forecasting and enhancing the quality parameters of laser cutting using Response Surface Methodology (RSM). The Particle Swarm Optimisation (PSO) algorithm was also employed to determine the optimal values of the design parameters for machining composites. The laser power has been precisely optimised to a value of 21.40 W. A constant setting of 3 mm/s for the scan speed and 3.04 bar of gas pressure enables accurate and controlled laser machining of the hybrid polymer composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of Data and Materials

Data sharing does not apply to this article as no new data were generated during the study.

References

  1. Kamarudin, S. H., Mohd Basri, M. S., Rayung, M., Abu, F., Ahmad, S., Norizan, M. N., … Abdullah, L. C. (2022, September 1). A review on natural fiber reinforced polymer composites (NFRPC) for sustainable industrial applications. Polymers. MDPI. https://doi.org/10.3390/polym14173698

  2. Mishra, T., Mandal, P., Rout, A. K., & Sahoo, D. (2022). A state-of-the-art review on potential applications of natural fiber-reinforced polymer composite filled with inorganic nanoparticle. Composites Part C: Open Access. https://doi.org/10.1016/j.jcomc.2022.100298

    Article  Google Scholar 

  3. Jamshidian, M., Tehrany, E. A., Imran, M., Jacquot, M., & Desobry, S. (2010). Poly-Lactic Acid: Production, applications, nanocomposites, and release studies. Comprehensive Reviews in Food Science and Food Safety, 9(5), 552–571. https://doi.org/10.1111/j.1541-4337.2010.00126.x

    Article  Google Scholar 

  4. Farah, S., Anderson, D. G., & Langer, R. (2016). Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review. Advanced Drug Delivery Reviews. https://doi.org/10.1016/j.addr.2016.06.012

    Article  Google Scholar 

  5. Kim, K., & Baek, S. Y. (2023). Influence of counterpart material on fretting wear of FDM printed polylactic acid plates. International Journal of Precision Engineering and Manufacturing, 24(10), 1855–1863. https://doi.org/10.1007/s12541-023-00806-7

    Article  Google Scholar 

  6. Nirmal Kumar, K., Dinesh Babu, P., Surakasi, R., Kumar, P. M., Ashokkumar, P., Khan, R., Alfozan, A., & Gebreyohannes, D. T. (2022). Mechanical and thermal properties of bamboo fiber-reinforced PLA polymer composites: A critical study. International Journal of Polymer Science, 2022, 1–15. https://doi.org/10.1155/2022/1332157

    Article  Google Scholar 

  7. Roslan, S. A. H., Rasid, Z. A., & Hassan, M. Z. (2018). Bamboo reinforced polymer composite - A comprehensive review. In IOP Conference Series: Materials Science and Engineering (Vol. 344). Institute of Physics Publishing. https://doi.org/10.1088/1757-899X/344/1/012008

  8. Abdul Khalil, H. P. S., Bhat, I. U. H., Jawaid, M., Zaidon, A., Hermawan, D., & Hadi, Y. S. (2012). Bamboo fibre reinforced biocomposites: A review. Materials and Design. https://doi.org/10.1016/j.matdes.2012.06.015

    Article  Google Scholar 

  9. Najjar, I. M. R., Sadoun, A. M., Abd Elaziz, M., Abdallah, A. W., Fathy, A., & Elsheikh, A. H. (2022). Predicting kerf quality characteristics in laser cutting of basalt fibers reinforced polymer composites using neural network and chimp optimization. Alexandria Engineering Journal, 61(12), 11005–11018. https://doi.org/10.1016/j.aej.2022.04.032

    Article  Google Scholar 

  10. Archibong, F. N., Orakwe, L. C., Ogah, O. A., Mbam, S. O., Ajah, S. A., Okechukwu, M. E., Igberi, C. O., Okafor, K. J., Chima, M. O., & Ikelle, I. I. (2023). Emerging progress in montmorillonite rubber/polymer nanocomposites: A review. Journal of Materials Science., 58(6), 2396–2429. https://doi.org/10.1007/s10853-023-08173-4

    Article  Google Scholar 

  11. Moyo, M., Kanny, K., & Mohan, T. P. (2021). Thermo-mechanical response of kenaf/PLA biocomposites to clay nanoparticles infusion. In Materials Today: Proceedings (Vol. 38, pp. 609–613). Elsevier Ltd. https://doi.org/10.1016/j.matpr.2020.03.471

  12. Lotfi, A., Li, H., Dao, D. V., & Prusty, G. (2021). Natural fiber–reinforced composites: A review on material, manufacturing, and machinability. Journal of Thermoplastic Composite Materials. https://doi.org/10.1177/0892705719844546

    Article  Google Scholar 

  13. Moustafa, E. B., & Elsheikh, A. (2023). Predicting characteristics of dissimilar laser welded polymeric joints using a multi-layer perceptrons model coupled with archimedes optimizer. Polymers. https://doi.org/10.3390/polym15010233

    Article  Google Scholar 

  14. Elsheikh, A. H., Shehabeldeen, T. A., Zhou, J., Showaib, E., & Abd Elaziz, M. (2021). Prediction of laser cutting parameters for polymethylmethacrylate sheets using random vector functional link network integrated with equilibrium optimizer. Journal of Intelligent Manufacturing, 32(5), 1377–1388. https://doi.org/10.1007/s10845-020-01617-7

    Article  Google Scholar 

  15. Zhou, H., Wu, C., Tang, D., Shi, X., Xue, Y., Huang, Q., Zhang, J., Elsheikh, A. H., & Ibrahim, A. M. M. (2021). Tribological performance of gradient Ag-multilayer graphene/TC4 alloy self-lubricating composites prepared by laser additive manufacturing. Tribology Transactions, 64(5), 819–829. https://doi.org/10.1080/10402004.2021.1922789

    Article  Google Scholar 

  16. Rawal, S., Sidpara, A. M., & Paul, J. (2022). A review on micro machining of polymer composites. Journal of Manufacturing Processes. https://doi.org/10.1016/j.jmapro.2022.03.014

    Article  Google Scholar 

  17. Alsoruji, G., Muthuramalingam, T., Moustafa, E. B., & Elsheikh, A. (2022). Investigation and TGRA based optimization of laser beam drilling process during machining of Nickel Inconel 718 alloy. Journal of Materials Research and Technology, 18, 720–730. https://doi.org/10.1016/j.jmrt.2022.02.112

    Article  Google Scholar 

  18. Kechagias, J. D., Ninikas, K., Petousis, M., & Vidakis, N. (2022). Laser cutting of 3D printed acrylonitrile butadiene styrene plates for dimensional and surface roughness optimization. International Journal of Advanced Manufacturing Technology, 119(3–4), 2301–2315. https://doi.org/10.1007/s00170-021-08350-2

    Article  Google Scholar 

  19. Fountas, N. A., Ninikas, K., Chaidas, D., Kechagias, J., & Vaxevanidis, N. M. (2022). Neural networks for predicting kerf characteristics of CO2 laser-machined FFF PLA/WF plates. MATEC Web of Conferences, 368, 01010. https://doi.org/10.1051/matecconf/202236801010

    Article  Google Scholar 

  20. Petousis, M., Ninikas, K., Vidakis, N., Mountakis, N., & Kechagias, J. D. (2023). Multifunctional PLA/CNTs nanocomposites hybrid 3D printing integrating material extrusion and CO2 laser cutting. Journal of Manufacturing Processes, 86, 237–252. https://doi.org/10.1016/j.jmapro.2022.12.060

    Article  Google Scholar 

  21. Liu, Y., Zhang, S., Zhao, Y., & Ren, Z. (2022). Experiments on the kerf quality characteristic of mild steel while cutting with a high-power fiber laser. Optics and Laser Technology. https://doi.org/10.1016/j.optlastec.2022.108332

    Article  Google Scholar 

  22. Alhawsawi, A. M., Moustafa, E. B., Fujii, M., Banoqitah, E. M., & Elsheikh, A. (2023). Kerf characteristics during CO2 laser cutting of polymeric materials: Experimental investigation and machine learning-based prediction. Engineering Science and Technology, an International Journal, 46, 101519. https://doi.org/10.1016/j.jestch.2023.101519

    Article  Google Scholar 

  23. Mishra, D. R., Bajaj, A., & Bisht, R. (2020). Optimization of multiple kerf quality characteristics for cutting operation on carbon–basalt–Kevlar29 hybrid composite material using pulsed Nd:YAG laser using GRA. CIRP Journal of Manufacturing Science and Technology, 30, 174–183. https://doi.org/10.1016/j.cirpj.2020.05.005

    Article  Google Scholar 

  24. Zeilmann, R. P., & Conrado, R. D. (2022). Effects of cutting power, speed and assist gas pressure parameters on the surface integrity cut by laser. In Procedia CIRP (Vol. 108, pp. 367–371). Elsevier B.V. https://doi.org/10.1016/j.procir.2022.03.060

  25. Kurt, M., Kaynak, Y., Bagci, E., Demirer, H., & Kurt, M. (2009). Dimensional analyses and surface quality of the laser cutting process for engineering plastics. International Journal of Advanced Manufacturing Technology, 41(3–4), 259–267. https://doi.org/10.1007/s00170-008-1468-7

    Article  Google Scholar 

  26. Moradi, M., Moghadam, M. K., Shamsborhan, M., Bodaghi, M., & Falavandi, H. (2020). Post-processing of FDM 3d-printed polylactic acid parts by laser beam cutting. Polymers, 12(3), 550. https://doi.org/10.3390/polym12030550

    Article  Google Scholar 

  27. Muthuramalingam, T., Akash, R., Krishnan, S., Phan, N. H., Pi, V. N., & Elsheikh, A. H. (2021). Surface quality measures analysis and optimization on machining titanium alloy using CO2 based laser beam drilling process. Journal of Manufacturing Processes, 62, 1–6. https://doi.org/10.1016/j.jmapro.2020.12.008

    Article  Google Scholar 

  28. Tahir, A. F. M., & Aqida, S. N. (2017). An investigation of laser cutting quality of 22MnB5 ultra high strength steel using response surface methodology. Optics and Laser Technology, 92, 142–149. https://doi.org/10.1016/j.optlastec.2017.01.005

    Article  Google Scholar 

  29. Pandey, A. K., & Dubey, A. K. (2012). Taguchi based fuzzy logic optimization of multiple quality characteristics in laser cutting of Duralumin sheet. Optics and Lasers in Engineering, 50(3), 328–335. https://doi.org/10.1016/j.optlaseng.2011.11.005

    Article  Google Scholar 

  30. Dubey, A. K., & Yadava, V. (2008). Multi-objective optimization of Nd:YAG laser cutting of nickel-based superalloy sheet using orthogonal array with principal component analysis. Optics and Lasers in Engineering, 46(2), 124–132. https://doi.org/10.1016/j.optlaseng.2007.08.011

    Article  Google Scholar 

  31. Sharma, A., Yadava, V., & Rao, R. (2010). Optimization of kerf quality characteristics during Nd: YAG laser cutting of nickel based superalloy sheet for straight and curved cut profiles. Optics and Lasers in Engineering, 48(9), 915–925. https://doi.org/10.1016/j.optlaseng.2010.03.005

    Article  Google Scholar 

  32. Seo, J., Kim, D. Y., Kim, D. C., & Park, H. W. (2021). Recent developments and challenges on machining of carbon fiber reinforced polymer composite laminates. International Journal of Precision Engineering and Manufacturing. https://doi.org/10.1007/s12541-021-00596-w

    Article  Google Scholar 

  33. Xie, Y., Li, W., Liu, C., Du, M., & Feng, K. (2023). Optimization of stamping process parameters based on improved GA-BP neural network model. International Journal of Precision Engineering and Manufacturing, 24(7), 1129–1145. https://doi.org/10.1007/s12541-023-00811-w

    Article  Google Scholar 

  34. Tamrin, K. F., Nukman, Y., Choudhury, I. A., & Shirley, S. (2015). Multiple-objective optimization in precision laser cutting of different thermoplastics. Optics and Lasers in Engineering, 67, 57–65. https://doi.org/10.1016/j.optlaseng.2014.11.001

    Article  Google Scholar 

  35. Venkatesan, K., & Ramanujam, R. (2016). Statistical approach for optimization of influencing parameters in laser assisted machining (LAM) of Inconel alloy. Measurement: Journal of the International Measurement Confederation, 89, 97–108. https://doi.org/10.1016/j.measurement.2016.04.021

    Article  Google Scholar 

  36. Kumar Pandey, A., & Kumar Dubey, A. (2012). Simultaneous optimization of multiple quality characteristics in laser cutting of titanium alloy sheet. Optics and Laser Technology, 44(6), 1858–1865. https://doi.org/10.1016/j.optlastec.2012.01.019

    Article  Google Scholar 

  37. He, G., Du, Y., Liang, Q., Zhou, Z., & Shu, L. (2023). Modeling and optimization method of laser cladding based on GA-ACO-RFR and GNSGA-II. International Journal of Precision Engineering and Manufacturing-Green Technology, 10(5), 1207–1222. https://doi.org/10.1007/s40684-022-00492-2

    Article  Google Scholar 

  38. Elsheikh, A. H., Muthuramalingam, T., Abd Elaziz, M., Ibrahim, A. M. M., & Showaib, E. A. (2022). Minimization of fume emissions in laser cutting of polyvinyl chloride sheets using genetic algorithm. International Journal of Environmental Science and Technology, 19(7), 6331–6344. https://doi.org/10.1007/s13762-021-03566-x

    Article  Google Scholar 

  39. Sibalija, T., Petronic, S., & Milovanovic, D. (2019). Experimental optimization of nimonic 263 laser cutting using a particle swarm approach. Metals, 9(11), 1147. https://doi.org/10.3390/met9111147

    Article  Google Scholar 

  40. Ramesh, M., Sundararaman, K. A., Sabareeswaran, M., & Srinivasan, R. (2022). Development of hybrid artificial neural network-particle swarm optimization model and comparison of genetic and particle swarm algorithms for optimization of machining fixture layout. International Journal of Precision Engineering and Manufacturing, 23(12), 1411–1430. https://doi.org/10.1007/s12541-022-00698-z

    Article  Google Scholar 

  41. Coello Coello, C. A., Pulido, G. T., & Lechuga, M. S. (2004). Handling multiple objectives with particle swarm optimization. IEEE Transactions on Evolutionary Computation, 8(3), 256–279. https://doi.org/10.1109/TEVC.2004.826067

    Article  Google Scholar 

  42. Kennedy, J., & Eberhart, R. (n.d.). Particle swarm optimization. In Proceedings of ICNN’95 - International Conference on Neural Networks (Vol. 4, pp. 1942–1948). IEEE. https://doi.org/10.1109/ICNN.1995.488968

  43. Sibalija, T. V. (2019). Particle swarm optimisation in designing parameters of manufacturing processes: A review (2008–2018). Applied Soft Computing Journal, 84, 105743. https://doi.org/10.1016/j.asoc.2019.105743

    Article  Google Scholar 

  44. Mohanty, C. P., Mahapatra, S. S., & Singh, M. R. (2016). A particle swarm approach for multi-objective optimization of electrical discharge machining process. Journal of Intelligent Manufacturing, 27(6), 1171–1190. https://doi.org/10.1007/s10845-014-0942-3

    Article  Google Scholar 

  45. Sharma, A., & Yadava, V. (2013). Modelling and optimization of cut quality during pulsed Nd:YAG laser cutting of thin Al-alloy sheet for curved profile. Optics and Lasers in Engineering, 51(1), 77–88. https://doi.org/10.1016/j.optlaseng.2012.07.012

    Article  Google Scholar 

  46. Chen, C., Zhang, G., Huang, Y., Rong, Y., Wu, C., Chen, L., & Yang, Z. (2023). Study on the CFRP nanosecond laser cutting damage and efficiency by aspiration system assisted method. Journal of Manufacturing Processes, 102, 95–105. https://doi.org/10.1016/j.jmapro.2023.07.031

    Article  Google Scholar 

  47. Yang, R., Huang, Y., Rong, Y., Wu, C., Liu, W., & Chen, L. (2022). Evaluation and classification of CFRP kerf width by acoustic emission in nanosecond laser cutting. Optics and Laser Technology, 152, 108165. https://doi.org/10.1016/j.optlastec.2022.108165

    Article  Google Scholar 

  48. Elsheikh, A. H., Deng, W., & Showaib, E. A. (2020). Improving laser cutting quality of polymethylmethacrylate sheet: Experimental investigation and optimization. Journal of Materials Research and Technology, 9(2), 1325–1339. https://doi.org/10.1016/j.jmrt.2019.11.059

    Article  Google Scholar 

  49. Khoshaim, A. B., Elsheikh, A. H., Moustafa, E. B., Basha, M., & Showaib, E. A. (2021). Experimental investigation on laser cutting of PMMA sheets: Effects of process factors on kerf characteristics. Journal of Materials Research and Technology, 11, 235–246. https://doi.org/10.1016/j.jmrt.2021.01.012

    Article  Google Scholar 

  50. Ismail, S. O., Dhakal, H. N., Popov, I., & Beaugrand, J. (2016). Comprehensive study on machinability of sustainable and conventional fibre reinforced polymer composites. Engineering Science and Technology, an International Journal, 19(4), 2043–2052. https://doi.org/10.1016/j.jestch.2016.07.010

    Article  Google Scholar 

  51. Pradhan, S., Tripathy, S. S., & Dhupal, D. (2022). Machining of aluminium nitride ceramic using developed hot abrasive jet machining: An experimental and simulation approach. Advances in Materials and Processing Technologies, 8(sup2), 596–610. https://doi.org/10.1080/2374068X.2021.1945275

    Article  Google Scholar 

  52. Wang, D., Tan, D., & Liu, L. (2018). Particle swarm optimization algorithm: An overview. Soft Computing, 22(2), 387–408. https://doi.org/10.1007/s00500-016-2474-6

    Article  Google Scholar 

  53. Escamilla-Salazar, I. G., Torres-Treviño, L. M., González-Ortíz, B., & Zambrano, P. C. (2013). Machining optimization using swarm intelligence in titanium (6Al 4V) alloy. International Journal of Advanced Manufacturing Technology, 67(1–4), 535–544. https://doi.org/10.1007/s00170-012-4503-7

    Article  Google Scholar 

  54. Tripathi, P. K., Bandyopadhyay, S., & Pal, S. K. (2007). Multi-Objective Particle Swarm Optimization with time variant inertia and acceleration coefficients. Information Sciences, 177(22), 5033–5049. https://doi.org/10.1016/j.ins.2007.06.018

    Article  MathSciNet  Google Scholar 

  55. Piotrowski, A. P., Napiorkowski, J. J., & Piotrowska, A. E. (2023). particle swarm optimization or differential evolution—A comparison. Engineering Applications of Artificial Intelligence, 121, 106008. https://doi.org/10.1016/j.engappai.2023.106008

    Article  Google Scholar 

  56. Li, C., Xiao, Q., Tang, Y., & Li, L. (2016). A method integrating Taguchi, RSM and MOPSO to CNC machining parameters optimization for energy saving. Journal of Cleaner Production, 135, 263–275. https://doi.org/10.1016/j.jclepro.2016.06.097

    Article  Google Scholar 

  57. Sierra, M. R., & Coello Coello, C. A. (2005). Improving PSO-based multi-objective optimization using crowding, mutation and ∈-dominance (pp. 505–519). https://doi.org/10.1007/978-3-540-31880-4_35

  58. Tamrin, K. F., Moghadasi, K., & Sheikh, N. A. (2020). Experimental and numerical investigation on multi-pass laser cutting of natural fibre composite. International Journal of Advanced Manufacturing Technology, 107(3–4), 1483–1504. https://doi.org/10.1007/s00170-020-05121-3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Dinesh Babu.

Ethics declarations

Competing of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, K.N., Babu, P.D. Investigation on Polymer Hybrid Composite Through CO2 Laser Machining for Precise Machining Conditions. Int. J. Precis. Eng. Manuf. 25, 1043–1061 (2024). https://doi.org/10.1007/s12541-023-00942-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-023-00942-0

Keywords

Navigation