Skip to main content
Log in

Rapid Predictions for Lower-Order Dynamics of Machine Tools Based on the Rigid Multipoint Constraints

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

This study presents a rapid predicting method for lower-order dynamic performances of machine tools. Firstly, the governing equation of motion of the component substructure is obtained drawing on the dynamic condensation from the finite element analysis. Secondly, employing the rigid multipoint constraints at the joint and interface level, the improved reduced dynamic model of component substructures is formulated, resulting in a minimum set of generalized coordinates for external nodes. Then, utilizing the screw theory, the local stiffness mapping between joint and interfaces is illustrated. This is followed by merging the component and joint substructures, resulting in the reduced dynamic model of the entire machine tool. The proposed model is hugely efficient for predicting the distributions of dynamic performances within the entire workspace and guiding the optimal functional design under the framework of virtual machine tools. Finally, a comparison study on a box-in-box type precision horizontal machine tool shows that the lower-order dynamics predicted within the proposed approach have the same trend as those obtained by a complete order finite element model. The experimental modal analysis test shows that the errors of natural frequencies between the proposed model and experiments are lower than 15.61%, demonstrating the effectiveness and accuracy of the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Altintas, Y. (2000). Manufacturing automation. Cambridge University Press. https://doi.org/10.1017/CBO9780511843723

    Book  Google Scholar 

  2. Lin, C. W., Lin, Y. K., & Chu, C. H. (2013). Dynamic models and design of spindle-bearing systems of machine tools: A review. International Journal of Precision Engineering and Manufacturing, 14(3), 513–521. https://doi.org/10.1007/s12541-013-0070-6

    Article  Google Scholar 

  3. Lu, H., Ding, Y., Chang, Y., Chen, G., & Rui, X. (2020). Dynamics modelling and simulating of ultra-precision fly-cutting machine tool. International Journal of Precision Engineering and Manufacturing, 21(2), 189–202. https://doi.org/10.1007/s12541-019-00239-1

    Article  Google Scholar 

  4. Liu, Y. P., & Altintas, Y. (2022). Predicting the position-dependent dynamics of machine tools using progressive network. Precision Engineering, 73, 409–422. https://doi.org/10.1016/j.precisioneng.2021.10.010

    Article  Google Scholar 

  5. Chan, Y. J., & Huang, J. W. (2018). Time-domain operational modal analysis in machine tools: Optimal parameters and practical issues. International Journal of Precision Engineering and Manufacturing, 19(6), 889–897. https://doi.org/10.1007/s12541-018-0105-0

    Article  Google Scholar 

  6. Hong, D., Kim, S., Choi, W. C., & Song, J.-B. (2003). Analysis of machining stability for a parallel machine tool. Mechanics Based Design of Structures and Machines, 31(4), 509–528. https://doi.org/10.1081/sme-120023169

    Article  Google Scholar 

  7. Whalley, R., Ebrahimi, M., & Abdul-Ameer, A. A. (2005). Hybrid modelling of machine tool axis drives. International Journal of Machine Tools and Manufacturing, 45(14), 1560–1576. https://doi.org/10.1016/j.ijmachtools.2005.03.002

    Article  Google Scholar 

  8. Ahmadi, K., & Ahmadian, H. (2007). Modelling machine tool dynamics using a distributed parameter tool-holder joint interface. International Journal of Machine Tools and Manufacturing, 47(12–13), 1916–1928. https://doi.org/10.1016/j.ijmachtools.2007.03.004

    Article  Google Scholar 

  9. Ren, Y., & Beards, C. F. (1998). Identification of “effective” linear joints using coupling and joint identification techniques. Journal of Vibration and Acoustics-Transactions of the ASME, 120(2), 331–338. https://doi.org/10.1115/1.2893835

    Article  Google Scholar 

  10. Huang, H. W., Tsai, M. S., & Huang, Y. C. (2018). Modeling and elastic deformation compensation of flexural feed drive system. International Journal of Machine Tools and Manufacturing, 132, 96–112. https://doi.org/10.1016/j.ijmachtools.2018.05.002

    Article  Google Scholar 

  11. Piras, G., Cleghorn, W. L., & Mills, J. K. (2005). Dynamic finite-element analysis of a planar high-speed, high-precision parallel manipulator with flexible links. Mechanism and Machine Theory, 40(7), 849–862. https://doi.org/10.1016/j.mechmachtheory.2004.12.007

    Article  MATH  Google Scholar 

  12. Lian, B., Wang, L., & Wang, X. V. (2019). Elastodynamic modeling and parameter sensitivity analysis of a parallel manipulator with articulated traveling plate. International Journal of Advanced Manufacturing Technology, 102, 1583–1599. https://doi.org/10.1007/s00170-018-03257-x

    Article  Google Scholar 

  13. Venugopal, P. R., Kalayarasan, M., Thyla, P. R., Mohanram, P. V., Nataraj, M., Mohanraj, S., & Sonawane, H. (2019). Structural investigation of steel-reinforced epoxy granite machine tool column by finite element analysis. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(11), 2267–2279. https://doi.org/10.1177/1464420719840592

    Article  Google Scholar 

  14. Polyakov, A. N., & Kamenev, S. V. (2019). A method to select the finite element models for the structural analysis of machine tools. Journal of Physics Conference Series, 1399, 044033. https://doi.org/10.1088/1742-6596/1399/4/044033

    Article  Google Scholar 

  15. Huang, T. Y., & Lee, J. J. (2001). On obtaining machine tool stiffness by CAE techniques. International Journal of Machine Tools and Manufacturing, 41(8), 1149–1163. https://doi.org/10.1016/S0890-6955(01)00012-8

    Article  Google Scholar 

  16. Ma, Y., Niu, W. T., Luo, Z. J., Yin, F., & Huang, T. (2016). Static and dynamic performance evaluation of a 3-DOF spindle head using CAD-CAE integration methodology. Robotics and Computer-Integrated Manufacturing, 41, 1–12. https://doi.org/10.1016/j.rcim.2016.02.006

    Article  Google Scholar 

  17. Wang, J., Niu, W., Ma, Y., Xue, L., Cun, H., Nie, Y., & Zhang, D. (2017). A CAD/CAE-integrated structural design framework for machine tools. International Journal of Advanced Manufacturing Technology, 91(1–4), 545–568. https://doi.org/10.1007/s00170-016-9721-y

    Article  Google Scholar 

  18. Rui, X., He, B., Lu, Y., Lu, W., & Wang, G. (2005). Discrete time transfer matrix method for multibody system dynamics. Multibody System Dynamics, 14, 317–344. https://doi.org/10.1007/s11044-005-5006-1

    Article  MathSciNet  MATH  Google Scholar 

  19. Rui, X., Bestle, D., Zhang, J., & Zhou, Q. (2016). A new version of transfer matrix method for multibody systems. Multibody System Dynamics, 38, 137–156. https://doi.org/10.1007/s11044-016-9528-5

    Article  MathSciNet  MATH  Google Scholar 

  20. Abbas, L. K., Zhou, Q., Hendy, H., & Rui, X. (2015). Transfer matrix method for determination of the natural vibration characteristics of elastically coupled launch vehicle boosters. Acta Mechanica Sinica, 31, 570–580. https://doi.org/10.1007/s10409-015-0425-6

    Article  MathSciNet  MATH  Google Scholar 

  21. Ding, J., Chang, Y., Chen, P., Zhuang, H., Ding, Y., Lu, H., & Chen, Y. (2020). Dynamic modeling of ultra-precision fly cutting machine tool and the effect of ambient vibration on its tool tip response. International Journal of Extreme Manufacturing, 2(2), 025301. https://doi.org/10.1088/2631-7990/ab7b59

    Article  Google Scholar 

  22. Farhat, C., & Geradin, M. (1994). On a component mode synthesis method and its application to incompatible substructures. Computers and Structures, 51(5), 459–473. https://doi.org/10.1016/0045-7949(94)90053-1

    Article  MATH  Google Scholar 

  23. Park, K. C., & Park, Y. H. (2004). Partitioned component mode synthesis via a flexibility approach. AIAA Journal, 42(6), 1236–1245. https://doi.org/10.2514/1.10423

    Article  Google Scholar 

  24. Jakobsson, H., Bengzon, F., & Larson, M. G. (2011). Adaptive component mode synthesis in linear elasticity. International Journal for Numerical Methods in Engineering, 86(7), 829–844. https://doi.org/10.1002/nme.3078

    Article  MathSciNet  MATH  Google Scholar 

  25. Law, M., Altintas, Y., & Phani, A. S. (2013). Rapid evaluation and optimization of machine tools with position-dependent stability. International Journal of Machine Tools and Manufacturing, 68, 81–90. https://doi.org/10.1016/j.ijmachtools.2013.02.003

    Article  Google Scholar 

  26. Law, M., Phani, A. S., & Altintas, Y. (2013). Position-dependent multibody dynamic modeling of machine tools based on improved reduced order models. Journal of Manufacturing Science and Engineering-Transactions of the ASME, 135(2), 2186–2199. https://doi.org/10.1115/1.4023453

    Article  Google Scholar 

  27. Law, M., & Ihlenfeldt, S. (2014). A frequency-based substructuring approach to efficiently model position-dependent dynamics in machine tools. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 229(3), 304–317. https://doi.org/10.1177/1464419314562264

    Article  Google Scholar 

  28. Wu, L., Wang, G., Liu, H., & Huang, T. (2018). An approach for elastodynamic modeling of hybrid robots based on substructure synthesis technique. Mechanism and Machine Theory, 123, 124–136. https://doi.org/10.1016/j.mechmachtheory.2017.12.019

    Article  Google Scholar 

  29. Heirman, G., & Desmet, W. (2010). Interface reduction of flexible bodies for efficient modeling of body flexibility in multibody dynamics. Multibody System Dynamics, 24(2), 219–234. https://doi.org/10.1007/s11044-010-9198-7

    Article  MATH  Google Scholar 

  30. Bampton, M., & Craig, J. (1968). Coupling of substructures for dynamic analyses. AIAA Journal, 6(7), 1313–1319. https://doi.org/10.2514/3.4741

    Article  MATH  Google Scholar 

  31. Mario, P. (1984). Dynamic condensation. AIAA Journal, 22(5), 724–727. https://doi.org/10.2514/3.48498

    Article  Google Scholar 

  32. Masson, G., Brik, B. A., Cogan, S., & Bouhaddi, N. (2006). Component mode synthesis (CMS) based on an enriched Ritz approach for efficient structural optimization. Journal of Sound and Vibration, 296(4–5), 845–860. https://doi.org/10.1016/j.jsv.2006.03.024

    Article  Google Scholar 

  33. Altintas, Y., Verl, A., Brecher, C., Uriarte, L., & Pritschow, G. (2011). Machine tool feed drives. CIRP Annals Manufacturing Technology, 60(2), 779–796. https://doi.org/10.1016/j.cirp.2011.05.010

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the EU Grant H2020-RISE-ECSASDPE (734272) and the China Scholarship Council (201908080118).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiwei Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Tian, Y. & Liu, X. Rapid Predictions for Lower-Order Dynamics of Machine Tools Based on the Rigid Multipoint Constraints. Int. J. Precis. Eng. Manuf. 24, 485–500 (2023). https://doi.org/10.1007/s12541-022-00761-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-022-00761-9

Keywords

Navigation