Skip to main content
Log in

Enhanced Hydrogen Delayed Fracture of 1.5 GPa Hot Stamping Steel Sheet with Sheared Surface by Double Punching Method

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

A cold trimming technology reduces the process time and product cost compared to the common laser trimming method in hot stamping process. However, high stress concentration during the cold trimming can lead to quality defects such as premature cracking. Moreover, the defects may cause critical delayed fracture under hydrogen environment. In this study, experimental and numerical investigation are provided to understand the effect of cold trimming method on the surface quality and hydrogen induced delayed fracture of a hot stamped high strength steel. Specimens with different clearances, tool geometries, and process conditions are considered along with different trimming methods. The new trimming processes are the process division and double punching methods, which are suggested to overcome the drawback of the conventional single punching method. The experiments show that the sheared surface profile is mainly dependent on the trimming clearance, while the hydrogen embrittlement (or its resultant delayed fracture) is dominantly affected by the stress state of the trimmed surface. Especially, significant improvement in the hydrogen delayed fracture of hot stamped steel can be achieved by introducing the double punch method. This study suggests that the double punching can be a potential trimming method as an alternative to the laser trimming by reducing the cost and process time in producing the hot stamped automotive parts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bok, H. H., Choi, J. W., Barlat, F., Suh, D. W., & Lee, M. G. (2014). Thermo-mechanical-metallurgical modeling for hot-press forming in consideration of the prior austenite deformation effect. International Journal of Plasticity, 58, 154–183. https://doi.org/10.1016/j.ijplas.2013.12.002

    Article  Google Scholar 

  2. Bok, H. H., Lee, M. G., Kim, H. D., & Moon, M. B. (2010). Thermo-mechanical finite element analysis incorporating the temperature dependent stress-strain response of low alloy steel for practical application to the hot stamped part. Metals and Materials International, 16(2), 185–195. https://doi.org/10.1007/s12540-010-0405-0

    Article  Google Scholar 

  3. He, Q., Li, W., Wan, M., Li, C., & Cui, C. (2022). A numerical approach for predicting the springback of intersecting high-stiffened integral panel in spherical die forming. International Journal of Precision Engineering and Manufacturing, 23, 593–608. https://doi.org/10.1007/s12541-022-00642-1

    Article  Google Scholar 

  4. Lee, M. G., Kim, S. J., Han, H. N., & Jeong, W. C. (2009). Implicit finite element formulations for multi-phase transformation in high carbon steel. International Journal of Plasticity, 25(9), 1726–1758. https://doi.org/10.1016/j.ijplas.2008.11.010

    Article  MATH  Google Scholar 

  5. Bok, H. H., Lee, M. G., Pavlina, E. J., Barlat, F., & Kim, H. D. (2011). Comparative study of the prediction of microstructure and mechanical properties for a hot-stamped B-pillar reinforcing part. International Journal of Mechanical Sciences, 53(9), 744–752. https://doi.org/10.1016/j.ijmecsci.2011.06.006

    Article  Google Scholar 

  6. Suchy, I. (2006). Handbook of die design. McGraw-Hill.

    Google Scholar 

  7. Tisza, M., & Czinege, I. (2018). Comparative study of the application of steels and aluminium in lightweight production of automotive parts. International Journal of Lightweight Materials and Manufacture, 1(4), 229–238. https://doi.org/10.1016/j.ijlmm.2018.09.001

    Article  Google Scholar 

  8. Billur, E., & Altan, T. (2010). Challenges in forming advanced high strength steels. In Proceedings of the new developments in sheet metal forming, Retrieved December 14, 2015, from https://www.researchgate.net/publication/267785655_Challenges_in_Forming_Advanced_High_Strength_Steels

  9. Levy, B. S., & Van Tyne, C. J. (2012). Review of the shearing process for sheet steels and its effect on sheared-edge stretching. Journal of Materials Engineering and Performance, 21, 1205–1213. https://doi.org/10.1007/s11665-011-9997-x

    Article  Google Scholar 

  10. Hwang, A. I., Lee, D. G., Jung, Y. S., Koo, J. M., Cho, J. D., Lee, J. S., & Suh, D. W. (2021). Influence of microstructure constituents on the hydrogen-induced mechanical degradation in ultra-high strength sheet steels. Metals and Materials International, 27, 3959–3967. https://doi.org/10.1007/s12540-021-00968-x

    Article  Google Scholar 

  11. Örnek, C., Şeşen, B. M., & Ürgen, M. K. (2022). Understanding hydrogen-induced strain localization in super duplex stainless steel using digital image correlation technique. Metals and Materials International, 28, 475–486. https://doi.org/10.1007/s12540-021-01123-2

    Article  Google Scholar 

  12. Kim, H. J. (2020). Effects of prior austenite grain size on hydrogen delayed fracture of hot-stamped boron martensitic steel. Metallurgical and Materials Transactions A, 51, 237–251. https://doi.org/10.1007/s11661-019-05523-3

    Article  Google Scholar 

  13. Kim, H. J., Jeon, S. H., Yang, W. S., Yoo, B. G., Chung, Y. D., Ha, H. Y., & Chung, H. Y. (2018). Effects of titanium content on hydrogen embrittlement susceptibility of hot-stamped boron steels. Journal of Alloys and Compounds, 735, 2067–2080. https://doi.org/10.1016/j.jallcom.2017.12.004

    Article  Google Scholar 

  14. Totre, A., Nishad, R., & Bodke, S. (2013). An overview of factors affecting in breaking processes. International Journal of Emerging Technology and Advanced Engineering, 3(3), 390–395.

    Google Scholar 

  15. Takahashi, Y., Kawano, O., Horioka, S., & Ushida, K. (2012). Improvement of stretch flangeability of high-tensile-strength steel sheets by piercing under tension using humped bottom punch. Journal of the Japan Society for Technology of Plasticity, 53(617), 569–573. https://doi.org/10.9773/sosei.53.569

    Article  Google Scholar 

  16. Matsuno, T., Nitta, J., Sato, K., Mizumura, M., & Suehiro, M. (2015). Effect of shearing clearance and angle on stretch-flange formability evaluated by saddle-type forming test. Journal of Materials Processing Technology, 223, 98–104. https://doi.org/10.1016/j.jmatprotec.2015.03.041

    Article  Google Scholar 

  17. Basak, S., Kim, C., Jung, Y. I., et al. (2022). Analyses of shearing mechanism during shear-cutting of 980 MPa dual-phase steel sheets using ductile fracture modeling and simulation. International Journal of Material Forming, 15, 4. https://doi.org/10.1007/s12289-022-01654-y

    Article  Google Scholar 

  18. Hambli, R., Richir, S., Crubleau, P., & Taravel, B. (2003). Prediction of optimum clearance in sheet metal blanking processes. The International Journal of Advanced Manufacturing Technology, 22(1), 20–25. https://doi.org/10.1007/s00170-002-1437-5

    Article  Google Scholar 

  19. Kishore, S., & Altan, T. (2013). Research in blanking, hole flanging and edge cracking. Retrived February 4, 2018, from https://nanopdf.com/download/powerpoint-1057_pdf

  20. Pu, C., Zhou, D., Makrygiannis, P., Wu, W., Jia, Y., Zhu, F., Du, C., & Wang, Y. W. (2018). A Comprehensive study of hole punching for AHSS. WCX World Congress Experience. https://doi.org/10.4271/2018-01-0802

    Article  Google Scholar 

  21. Application number, 10-2014-0077005, Two step shearing method of hot-stamped ultra-high-strength material for preventing damage of press cutting mold.

  22. Robert, S., & Klintman, S., (2017). High strength steels for chassis application. ams webinars.

  23. Rijkenberg, A., Bellina, P., Jones, P., Cafolla, J., Vass, A., Aarnts, M., de Bruine, M., Beers, L., McEwan, C., Zuijderwijk, M., Gerrard, D., & Cremers, P. Stretching strength and formability for increased performance and mass savings in automotive chassis applications.

  24. Abe, Y., Mori, K. I., & Norita, K. (2013). Gradually contacting punch for improving stretch flangeability of ultra-high strength steel sheets. CIRP Annals Manufacturing Technology, 62(1), 263–266. https://doi.org/10.1016/j.cirp.2013.03.059

    Article  Google Scholar 

  25. ISO 16630:2017 Metallic materials-Sheet and strip-Hole expanding test. ISO International Organization for Standardization.

  26. DIN 8588:2013-08 Fertigungsverfahren Zerteilen Einordnung, Unterteilung, Begriffe. DIN German Institute for Standardization.

  27. Paetzold, I., Feistle, M., Golle, R., Volk, W., Frehn, A., & Ilskens, R. (2018). Determination of the minimum possible damage due to shear cutting using a multi-stage shear cutting process. IOP Conference Series: Materials Science and Engineering. https://doi.org/10.1088/1757-899X/418/1/012070

    Article  Google Scholar 

  28. Kuehlewein, R. (2003). Einfluss der Prozessparameter auf das Nachschneiden schergeschnittener Konturen . Dissertation, Technical University of Munich.

  29. Nothaft, K. (2014). Scherschneiden höchstfester Blechwerkstoffe im offenen Schnitt. Dissertation, Faculty of Mechanical Engineering. from https://mediatum.ub.tum.de/?id=1172629

  30. Choi, Y., Lee, J., Bong, H., & Lee, M. G. (2022). Hole expansion characteristics of W-tempered 7075 aluminum alloy sheet in comparison with peak aged T6 tempered alloy sheet. Metals and Materials International. https://doi.org/10.1007/s12540-022-01201-z

    Article  Google Scholar 

  31. Choi, Y., Ha, J. J., Lee, M. G., & Korkolis, Y. P. (2021). Effect of plastic anisotropy and Portevin-Le Chatelier bands on hole-expansion in AA7075 sheets in-T6 and-W tempers. Journal of Materials Processing Technology, 296, 117211. https://doi.org/10.1016/j.jmatprotec.2021.117211

    Article  Google Scholar 

  32. Matsuno, T., Kuriyama, Y., Murakami, H., Yonezawa, S., & Kanamaru, H. (2010). Effects of punch shape and clearance on hole expansion ratio and fatigue properties in punching of high strength steel sheets. Steel Research International, 81(9), 853–856.

    Google Scholar 

  33. ASTM G39-99(2016), Standard Practice for preparation and use of bent-beam stress corrosion test specimen. ASTM International. https://doi.org/10.1520/G0039-99R21

  34. Lim, J. H., & Lee, E. H. (2022). Simplified anisotropic yield function not requiring parameter optimization for sheet metals. International Journal of Precision Engineering and Manufacturing, 23(1), 67–78. https://doi.org/10.1007/s12541-021-00579-x

    Article  Google Scholar 

  35. Cockroft, M. G., & Latham, D. J. (1968). Ductility and the workability of metals. Journal of the Institute of Metals, 96, 33–39.

    Google Scholar 

  36. He, J., Li, S., & Dong, L. (2020). Experiments and FE simulation of edge cracking considering prehardening after blanking process. International Journal of Material Forming, 13, 547–560. https://doi.org/10.1007/s12289-019-01491-6

    Article  Google Scholar 

  37. Takahashi, Y., Horioka, S., Kawano, O., Ohara, M., & Ushioda, K. (2012). Improvement of stretch flangeability of high-tensile-strength steel sheets by piercing under tension using humped bottom punch. Jounal of the Japan Society for Technology of Plasticity, 53(617), 569–573. https://doi.org/10.9773/sosei.53.569

    Article  Google Scholar 

  38. Yoshino, M., Toji, Y., Takagi, S., & Hasegawa, K. (2014). Influence of sheared edge on hydrogen embrittlement resistance in an ultra-high strength steel sheet. ISIJ International, 54(6), 1416–1425. https://doi.org/10.2355/isijinternational.54.1416

    Article  Google Scholar 

  39. Lee, M. G., Kim, J. H., Kim, D., et al. (2013). Anisotropic hardening of sheet metals at elevated temperature: tension-compressions test development and validation. Experimental Mechanics, 53, 1039–1055. https://doi.org/10.1007/s11340-012-9694-1

    Article  Google Scholar 

  40. Basak, S., Kim, C., Jeong, W., Jung, Y. I., & Lee, M. G. (2022). Numerical prediction of sheared edge profiles in sheet metal trimming using ductile fracture modeling. International Journal of Mechanical Sciences, 219, 107109. https://doi.org/10.1016/j.ijmecsci.2022.107109

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by Hyundai steel company, which is greatly appreciated. MGL also appreciates the partial support by NRF of Korea government (Grant No. 2022R1A2C2009315), and Institute of Engineering Research at Seoul National University.

Author information

Authors and Affiliations

Authors

Contributions

JYK: Experiments, Writing-Original draft preparation; SCY: Experiments, Conceptualization and Methodology; HJK: Measurement and data analysis; MGL: Supervision, Writing-Original draft preparation. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Myoung-Gyu Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, JY., Yoon, SC., Kim, HJ. et al. Enhanced Hydrogen Delayed Fracture of 1.5 GPa Hot Stamping Steel Sheet with Sheared Surface by Double Punching Method. Int. J. Precis. Eng. Manuf. 24, 173–186 (2023). https://doi.org/10.1007/s12541-022-00734-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-022-00734-y

Keywords

Navigation