Skip to main content
Log in

Prescribed Adaptive Backstepping Control of Nonlinear Systems Preceded by Hysteresis in Piezoelectric Actuators

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

To address hysteresis in control systems, it is necessary to fuse the hysteresis model with existing control methods. However, the input signal implicitly involved in the hysteresis model can lead to obstacles in controller design. In this article, a novel hysteresis model with bounded auxiliary term is expressed in explicit form. The proposed model exhibits excellent modeling performance with simple structure. Then, the prescribed adaptive backstepping controller directly fused with the proposed model is adopted to realize stable and accurate control of system. Additionally, the tracking error within prescribed area is guaranteed. Experimental results are shown to validate the potential of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhang, X., Wang, Y., Wang, C., Su, C. Y., Li, Z., & Chen, X. (2019). Adaptive estimated inverse output feedback quantized control for piezoelectric positioning stage. IEEE Transactions on Cybernetics, 49(6), 2106–2118.

    Article  Google Scholar 

  2. Fang, J., Zhang, L., Long, Z., & Wang, M. Y. (2018). Fuzzy adaptive sliding mode control for the precision position of piezo-actuated nano positioning stage. International Journal of Precision Engineering and Manufacturing, 19(10), 1447–1456.

    Article  Google Scholar 

  3. Zhang, X., Jing, R., Li, Z., Chen, X., & Su, C. Y. (2020). Adaptive pseudo inverse control for a class of nonlinear asymmetric and saturated nonlinear hysteretic systems. IEEE/CAA Journal of Automatica Sinica, 8(4), 916–928.

    Article  MathSciNet  Google Scholar 

  4. Zhang, X., Li, B., Li, Z., Yang, C., Chen, X., & Su, C. Y. (2020). Adaptive neural digital control of hysteretic systems with implicit inverse compensator and its application on magnetostrictive actuator. IEEE Transactions on Neural Networks and Learning Systems. https://doi.org/10.1109/TNNLS.2020.3028500

    Article  Google Scholar 

  5. Gu, G. Y., Zhu, L. M., Su, C. Y., Ding, H., & Fatikow, S. (2014). Modeling and control of piezo-actuated nanopositioning stages: A survey. IEEE Transactions on Automation Science and Engineering, 13(1), 313–332.

    Article  Google Scholar 

  6. Hassani, V., Tjahjowidodo, T., & Do, T. N. (2019). A survey on hysteresis modeling, identification and control. Mechanical Systems and Signal Processing, 49(1–2), 209–233.

    Google Scholar 

  7. Yang, Y., Yang, B., & Niu, M. (2017). Parameter identification of Jiles-Atherton model for magnetostrictive actuator using hybrid niching coral reefs optimization algorithm. Sensors and Actuators A: Physical, 261, 184–195.

    Article  Google Scholar 

  8. Kiarie, W. M., Barron, E. J., Baghel, A. P. S., Nlebedim, I. C., Bartlett, M. D., & Jiles, D. C. (2020). Modeling of magnetic properties of magnetorheological elastomers using JA hysteresis model. IEEE Transactions on Magnetics, 57(2), 1–5.

    Article  Google Scholar 

  9. Singh, H., & Sudhoff, S. D. (2020). Reconsideration of energy balance in Jiles-Atherton model for accurate prediction of B-H trajectories in ferrites. IEEE Transactions on Magnetics, 56(7), 1–8.

    Google Scholar 

  10. Upadhaya, R. B. P., Perkkiö, L., Handgruber, P., Benabou, A., Belahcen, A., & Arkkio, A. (2021). Alternating and rotational loss prediction accuracy of vector Jiles-Atherton model. Journal of Magnetism and Magnetic Materials, 527, 167690.

    Article  Google Scholar 

  11. Tan, X., & Baras, J. S. (2004). Modeling and control of hysteresis in magnetostrictive actuators. Automatica, 40(9), 1469–1480.

    Article  MathSciNet  MATH  Google Scholar 

  12. Song, G., Zhao, J., & Zhou, X. (2015). Tracking control of a piezoceramic actuator with hysteresis compensation using inverse Preisach model. IEEE/ASME Transactions on Mechatronics, 10(2), 198–209.

    Article  Google Scholar 

  13. Li, Z., Shan, J., & Gabbert, U. (2018). Inverse compensator for a simplified discrete Preisach model using model-order reduction approach. IEEE Transactions on Industrial Electronics, 66(8), 6170–6178.

    Article  Google Scholar 

  14. Mohammad, A. J., Rakheja, S., & Su, C. Y. (2011). An analytical generalized Prandtl-Ishlinskii model inversion for hysteresis compensation in micropositioning control. IEEE/ASME Transactions on Mechatronics, 16(4), 734–744.

    Article  Google Scholar 

  15. Ming, M., Ling, J., Feng, Z., & Xiao, X. (2018). A model prediction control design for inverse multiplicative structure based feedforward hysteresis compensation of a piezo nanopositioning stage. International Journal of Precision Engineering and Manufacturing, 19(11), 1699–1708.

    Article  Google Scholar 

  16. Zareinejad, M., Ghidary, S. S., Rezaei, S. M., & Abdullah, A. (2010). Precision control of a piezo-actuated micro telemanipulation system. International Journal of Precision Engineering and Manufacturing, 11(1), 55–65.

    Article  Google Scholar 

  17. Ikhouane, F., & Rodellar, J. E. (2007). Systems with hysteresis (pp. 393–406). Springer.

    Book  MATH  Google Scholar 

  18. Li, Z., Shan, J., & Gabbert, U. (2018). Inverse compensation of hysteresis using Krasnoselskii-Pokrovskii model. IEEE/ASME Transactions on Mechatronics, 23(2), 966–971.

    Article  Google Scholar 

  19. Mohd, R. M. H., Vu, M. T., & Chen, X. K. (2018). Pseudoextended Bouc-Wen model and adaptive control design with applications to smart actuators. IEEE Transactions on Control Systems Technology, 27(5), 2100–2109.

    Google Scholar 

  20. Zhou, M., Wang, Y., Zhang, Y., & Gao, W. (2020). Hysteresis inverse compensation-based model reference adaptive control for a piezoelectric micro-positioning platform. Smart Materials and Structures, 30(1), 015019.

    Article  Google Scholar 

  21. Xu, R., Pan, W., Wang, Z., & Tian, D. (2020). High-precision tracking control of a piezoelectric micro-nano platform using sliding mode control with the fractional-order operator. International Journal of Precision Engineering and Manufacturing, 21(12), 2277–2286.

    Article  Google Scholar 

  22. Oh, J. H., & Bernstein, D. S. (2007). Piecewise linear identification for the rate-independent and rate-dependent Duhem hysteresis models. IEEE Transactions on Automatic Control, 52(3), 576–582.

    Article  MathSciNet  MATH  Google Scholar 

  23. Naser, M., Fuad, M., & Ikhouane, F. (2013). Consistency of the Duhem model with hysteresis. Mathematical Problems in Engineering, 2013, 1–16.

    Article  MathSciNet  MATH  Google Scholar 

  24. Su, C. Y., Stepanenko, Y., Svoboda, J., & Leung, T. P. (2000). Robust adaptive control of a class of nonlinear systems with unknown backlash-like hysteresis. IEEE Transactions on Automatic Control, 45(12), 2427–2432.

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhou, J., Wen, C., & Zhang, Y. (2004). Adaptive backstepping control of a class of uncertain nonlinear systems with unknown backlash-like hysteresis. IEEE Transactions on Automatic Control, 49(10), 1751–1759.

    Article  MathSciNet  MATH  Google Scholar 

  26. Gu, G. Y., Su, C. Y., & Zhu, L. M. (2015). Robust inverse compensation and control of a class of non-linear systems with unknown asymmetric backlash nonlinearity. IET Control Theory & Applications, 9(12), 1869–1877.

    Article  MathSciNet  Google Scholar 

  27. Zhao, X. L., & Tan, Y. H. (2008). Modeling hysteresis and its inverse model using neural networks based on expanded input space method. IEEE Transactions on Control Systems Technology, 16(3), 484–490.

    Article  Google Scholar 

  28. Li, P., Yan, F., Ge, C., Wang, X., Xu, L., Guo, J., & Li, P. (2013). A simple fuzzy system for modelling of both rate-independent and rate-dependent hysteresis in piezoelectric actuators. Mechanical Systems and Signal Processing, 36(1), 182–192.

    Article  Google Scholar 

  29. Xu, R., & Zhou, M. (2018). A self-adaption compensation control for hysteresis nonlinearity in piezo-actuated stages based on Pi-sigma fuzzy neural network. Smart Materials and Structures, 27(4), 045002.

    Article  Google Scholar 

  30. Zhang, C., Yu, Y., Wang, Y., & Zhou, M. (2020). Takagi sugeno fuzzy neural network hysteresis modeling for magnetic shape memory alloy actuator based on modified bacteria foraging algorithm. International Journal of Fuzzy Systems, 22(4), 1314–1329.

    Article  Google Scholar 

  31. Yu, Y., Zhang, C., Wang, Y., & Zhou, M. (2021). Neural network-based iterative learning control for hysteresis in magnetic shape memory alloy actuator. IEEE/ASME Transactions on Mechatronics. https://doi.org/10.1109/TMECH.2021.3075057

    Article  Google Scholar 

  32. Zhang, C., Yu, Y., Wang, Y., Han, Z., & Zhou, M. (2021). Chaotic neural network-based hysteresis modeling with dynamic operator for magnetic shape memory alloy actuator. IEEE Transactions on Magnetics, 57(6), 1–4.

    Google Scholar 

  33. Zhang, X., Li, Z., Su, C. Y., Lin, Y., & Fu, Y. (2016). Implementable adaptive inverse control of hysteretic systems via output feedback with application to piezoelectric positioning stages. IEEE Transactions on Industrial Electronics, 63(9), 5733–5743.

    Article  Google Scholar 

  34. Truong, B. N. M., & Ahn, K. K. (2017). Modeling, control and experimental investigation of time-average flow rate of a DEAP actuator based diaphragm pump. International Journal of Precision Engineering and Manufacturing, 18(8), 1119–1129.

    Article  Google Scholar 

  35. Gu, G. Y., Yang, M. J., & Zhu, L. M. (2012). Real-time inverse hysteresis compensation of piezoelectric actuators with a modified Prandtl-Ishlinskii model. Review of Scientific Instruments, 83(6), 065106.

    Article  Google Scholar 

  36. Janaideh, M. A., Rakheja, S., & Su, C. Y. (2010). An analytical generalized Prandtl-Ishlinskii model inversion for hysteresis compensation in micropositioning control. IEEE/ASME Transactions on Mechatronics, 16(4), 734–744.

    Article  Google Scholar 

  37. Liu, S., Su, C. Y., & Li, Z. (2014). Robust adaptive inverse control of a class of nonlinear systems with Prandtl-Ishlinskii hysteresis model. IEEE Transactions on Automatic Control, 59(8), 2170–2175.

    Article  MathSciNet  MATH  Google Scholar 

  38. Li, Z., Su, C. Y., & Chen, X. K. (2014). Modeling and inverse adaptive control of asymmetric hysteresis systems with applications to magnetostrictive actuator. Control Engineering Practice, 33, 148–160.

    Article  Google Scholar 

  39. Liu, S., & Su, C. Y. (2014). Inverse error analysis and adaptive output feedback control of uncertain systems proceeded with hysteresis actuators. IET Control Theory & Applications, 8(17), 1824–1832.

    Article  MathSciNet  Google Scholar 

  40. Zhang, X. Y., Chen, X. K., Zhu, G. Q., & Su, C. Y. (2019). Output feedback adaptive motion control and its experimental verification for time-delay nonlinear systems with asymmetric hysteresis. IEEE Transactions on Industrial Electronics, 99, 1–1.

    Google Scholar 

  41. Yi, S., Yang, B., & Meng, G. (2019). Microvibration isolation by adaptive feedforward control with asymmetric hysteresis compensation. Mechanical Systems and Signal Processing, 114, 644–657.

    Article  Google Scholar 

  42. Cai, J., Shen, L., & Wu, F. (2014). Adaptive control of a class of non-linear systems preceded by backlash-like hysteresis. Mathematical Structures in Computer Science. https://doi.org/10.1017/S0960129512000473

    Article  MATH  Google Scholar 

  43. He, W., & Meng, T. (2017). Adaptive control of a flexible string system with input hysteresis. IEEE Transactions on Control Systems Technology, 26(2), 693–700.

    Article  MathSciNet  Google Scholar 

  44. Su, C. Y., Wang, Q., Chen, X. K., & Rakheja, S. (2005). Adaptive variable structure control of a class of nonlinear systems with unknown Prandtl-Ishlinskii hysteresis. IEEE Transactions on Automatic Control, 50(12), 2069–2074.

    Article  MathSciNet  MATH  Google Scholar 

  45. Li, Z., Zhang, X., Su, C. Y., & Chai, T. (2015). Nonlinear control of systems preceded by Preisach hysteresis description: A prescribed adaptive control approach. IEEE Transactions on Control Systems Technology, 24(2), 451–460.

    Google Scholar 

  46. Liu, W., Cheng, L., Hou, Z. G., Yu, J., & Tan, M. (2016). An inversion-free predictive controller for piezoelectric actuators based on a dynamic linearized neural network model. IEEE/ASME Transactions on Mechatronics, 21(1), 214–226.

    Google Scholar 

  47. Namadchian, Z., & Rouhani, M. (2018). Adaptive neural tracking control of switched stochastic pure-feedback nonlinear systems with unknown Bouc-Wen hysteresis input. IEEE Transactions on Neural Networks and Learning Systems, 29(12), 5859–5869.

    Article  MathSciNet  Google Scholar 

  48. Peimani, M., Yazdanpanah, M. J., & Khaji, N. (2016). Adaptive dynamic surface control of Bouc-Wen hysteretic systems. Journal of Dynamic Systems, Measurement, and Control, 138(9), 091007.

    Article  Google Scholar 

  49. Bechlioulis, C. P., & Rovithakis, G. A. (2008). Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance. IEEE Transactions on Automatic Control, 53(9), 2090–2099.

    Article  MathSciNet  MATH  Google Scholar 

  50. Bechlioulis, C. P., & Rovithakis, G. A. (2009). Adaptive control with guaranteed transient and steady state tracking error bounds for strict feedback systems. Automatica, 45(2), 532–538.

    Article  MathSciNet  MATH  Google Scholar 

  51. Zhou, J., Wen, C., & Li, T. (2012). Adaptive output feedback control of uncertain nonlinear systems with hysteresis nonlinearity. IEEE Transactions on Automatic Control, 57(10), 2627–2633.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Natural Science Foundation of Zhejiang Province (Grant No: LY22F030003), the Program for Changjiang Scholars and Innovative Research Team in University (Grant No: IRT13097), and the Key Research and Development Program of Zhejiang Science and Technology Department (Grant No: 2021C01071).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinlong Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, L., Zhao, X. Prescribed Adaptive Backstepping Control of Nonlinear Systems Preceded by Hysteresis in Piezoelectric Actuators. Int. J. Precis. Eng. Manuf. 23, 733–740 (2022). https://doi.org/10.1007/s12541-022-00662-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-022-00662-x

Keywords

Navigation