Skip to main content
Log in

Operating Cost Savings in the Atomic Layer Deposition Process of Ultrathin Electrolyte for Solid Oxide Fuel Cells by Applying Oxygen Plasma

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

The impact of operating cost savings in a plasma-enhanced atomic layer deposition (P-ALD) process to fabricate the ultrathin yttria-stabilized zirconia (YSZ) electrolyte for low-temperature solid oxide fuel cells is quantitatively evaluated by comparison with a thermal atomic layer deposition (T-ALD) process considering the two cost factors: (1) operating costs of power consumption and precursor/gas usages and (2) capital costs of plasma generator installations. Because of lower precursor/gas usages and lower power consumption of the P-ALD YSZ process, it is evaluated that the specific operating costs of the P-ALD YSZ process is ~ 47% lower than that of the T-ALD YSZ process. For annual production of 2.6 kW fuel cell systems of 100 units, it is estimated that the cumulative cost savings of the P-ALD YSZ process versus the T-ALD YSZ process amounts to $678,000 in the fifth year.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Choi, H., Cho, G. Y., & Cha, S. W. (2014). Fabrication and characterization of anode supported YSZ/GDC bilayer electrolyte SOFC using dry press process. International Journal of Precision Engineering and Manufacturing-Green Technology, 1(2), 95–99.

    Article  Google Scholar 

  2. Lee, Y. H., Chang, I., Cho, G. Y., Park, J., Yu, W., Tanveer, W. H., & Cha, S. W. (2018). Thin film solid oxide fuel cells operating below 600°C: A review. International Journal of Precision Engineering and Manufacturing-Green Technology, 5(3), 441–453.

    Article  Google Scholar 

  3. Ji, S., Ha, J., Park, T., Kim, Y., Koo, B., Kim, Y. B., An, J., & Cha, S. W. (2016). Substrate-dependent growth of nanothin film solid oxide fuel cells toward cost-effective nanostructuring. International Journal of Precision Engineering and Manufacturing-Green Technology, 3(1), 35–39.

    Article  Google Scholar 

  4. Cho, G. Y., Yu, W., Lee, Y. H., Lee, Y., Tanveer, W. H., Kim, Y., Lee, S., & Cha, S. W. (2020). Effects of nanoscale PEALD YSZ interlayer for AAO based thin film solid oxide fuel cells. International Journal of Precision Engineering and Manufacturing-Green Technology, 7(2), 423–430.

    Article  Google Scholar 

  5. Yu, W., Lee, Y., Lee, Y., Cho, G. Y., Park, T. H., Tanveer, W. H., Kim, Y., & Cha, S. W. (2016). Performance enhancement of thin film LSCF cathodes by gold current collecting layer. International Journal of Precision Engineering and Manufacturing-Green Technology, 3(2), 185–188.

    Article  Google Scholar 

  6. Ji, S., Chang, I., Lee, Y. H., Park, J., Paek, J. Y., Lee, M. H., & Cha, S. W. (2013). Fabrication of low-temperature solid oxide fuel cells with a nanothin protective layer by atomic layer deposition. Nanoscale Research Letters, 8(48), 1–7.

    Google Scholar 

  7. Shin, J. W., Go, D., Kye, S. H., Lee, S., & An, J. (2019). Review on process-microstructure-performance relationship in ALD-engineered SOFCs. Journal of Physics, 1(4), 042002.

    Google Scholar 

  8. Shim, J. H., Chao, C. C., Huang, H., & Prinz, F. B. (2007). Atomic layer deposition of Yttria-stabilized zirconia for solid oxide fuel cells. Chemistry of Materials, 19(15), 3850–3854.

    Article  Google Scholar 

  9. Hong, S., Bae, J., Koo, B., & Kim, Y. B. (2014). High-performance ultra-thin film solid oxide fuel cell using anodized-aluminum-oxide supporting structure. Electrochemistry Communications, 47, 1–4.

    Article  Google Scholar 

  10. Park, J., Lee, Y., Chang, I., Cho, G. Y., Ji, S., Lee, W., & Cha, S. W. (2016). Atomic layer deposition of Yttria-stabilized zirconia thin films for enhanced reactivity and stability of solid oxide fuel cells. Energy, 116, 170–176.

    Article  Google Scholar 

  11. Kim, H., & Oh, I. K. (2014). Review of plasma-enhanced atomic layer deposition: technical enabler of nanoscale device fabrication. Japanese Journal of Applied Physics, 53(3S2), 03DA01.

    Article  Google Scholar 

  12. Ji, S., Cho, G. Y., Yu, W., Su, P.-C., Lee, M. H., & Cha, S. W. (2015). Plasma-enhanced atomic layer deposition of nanoscale Yttria-stabilized zirconia electrolyte for solid oxide fuel cells with porous substrate. ACS Applied Materials & Interfaces, 7(5), 2998–3002.

    Article  Google Scholar 

  13. Yu, W., Ji, S., Cho, G. Y., An, J., & Cha, S. W. (2014). Atomic layer deposition of ultrathin blocking layer for low-temperature solid oxide fuel cell on nanoporous substrate. Journal of Vacuum Science and Technology A, 33(1), 01A145.

    Article  Google Scholar 

  14. Cha, S. W., Cho, G. Y., Lee, Y., Park, T., Kim, Y., & Lee, J. (2016). Effects of carbon contaminations on Y2O3-stabilized ZrO2 thin film electrolyte prepared by atomic layer deposition for thin film solid oxide fuel cells. CIRP Annals, 65(1), 515–518.

    Article  Google Scholar 

  15. Song, M. K., & Rhee, S. W. (2008). Phase formation in the tantalum carbonitride film deposited with atomic layer deposition using ammonia. Journal of the Electrochemical Society, 155(10), H823–H828.

    Article  Google Scholar 

  16. Shin, J. W., Oh, S., Lee, S., Go, D., Park, J., Kim, H. J., Yang, B. C., Cho, G. Y., & An, J. (2021). ALD CeO2-coated Pt anode for thin-film solid oxide fuel cells. International Journal of Hydrogen Energy, 46(38), 20087–20092.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Korea Institute of Civil Engineering and Building Technology Projects (No. 20210154, 20220232) and the National Research Foundation of Korea Project (No. NRF-2018R1D1A1B07048082).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanghoon Ji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, S., Kim, Y. & Cha, S.W. Operating Cost Savings in the Atomic Layer Deposition Process of Ultrathin Electrolyte for Solid Oxide Fuel Cells by Applying Oxygen Plasma. Int. J. Precis. Eng. Manuf. 23, 573–579 (2022). https://doi.org/10.1007/s12541-022-00626-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-022-00626-1

Keywords

Navigation