Skip to main content
Log in

Development of 3D Resonant Elliptical Vibration Transducer for Dual-Frequency Micro-Dimple Surface Texturing

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

This paper proposes a dual-frequency surface texturing method that generates small, round, drop-shaped micro dimples on a cylindrical surface. To achieve this, two devices were developed: a 3D resonant elliptical vibration transducer and a non-resonant displacement amplifier. The 3D resonant elliptical vibration transducer operates at high frequency (≈18 kHz) and has three vibration modes: one longitudinal vibration mode and two bending vibration modes. The one-dimensional displacement amplifier operates at low frequency (≈155 Hz). Finite element analysis was used to develop 3D resonant elliptical vibration transducer. One dimensional displacement amplifier was designed on the basis of single parallel flexure hinge mechanism and its working principle was based on non-resonant transducer. The feasibility of the proposed method was examined by performing a surface texturing experiment on Al6061-T6 material specimen. The wettability of the micro-dimple structured surface was also examined by measuring the water contact angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Xu, S., Kuriyagawa, T., Shimada, K., & Mizutani, M. (2017). Recent advances in ultrasonic-assisted machining for the fabrication of micro/nano-textured surfaces. Frontiers of Mechanical Engineering, 12, 33–45. https://doi.org/10.1007/s11465-017-0422-5

    Article  Google Scholar 

  2. Zhang, J., Cui, T., Ge, C., Sui, Y., & Yang, H. (2016). Review of micro/nano machining by utilizing elliptical vibration cutting. International Journal of Machine Tools and Manufacture, 106, 109–126. https://doi.org/10.1016/j.ijmachtools.2016.04.008

    Article  Google Scholar 

  3. Bruzzone, A. A. G., Costa, H. L., Lonardo, P. M., & Lucca, D. A. (2008). Advances in engineered surfaces for functional performance. CIRP Annals-Manufucture Technology, 57, 750–769. https://doi.org/10.1016/j.cirp.2008.09.003

    Article  Google Scholar 

  4. Kurniawan, R., & Ko, T. J. (2015). Friction reduction on cylindrical surfaces by texturing with a piezoelectric actuated tool holder. International Journal of Precision Engineering and Manufacturing, 16, 861–868. https://doi.org/10.1007/s12541-015-0113-2

    Article  Google Scholar 

  5. Guo, P., & Ehmann, K. F. (2011). Development of a new vibrator for elliptical vibration texturing, ASME 2011 Int. Manufacture Science Engineering Conference MSEC, 2011(1), 373–380. https://doi.org/10.1115/MSEC2011-50131

    Article  Google Scholar 

  6. Vilhena, L. M., Sedlaček, M., Podgornik, B., Vižintin, J., Babnik, A., & Možina, J. (2009). Surface texturing by pulsed Nd:YAG laser. Tribology International, 42, 1496–1504. https://doi.org/10.1016/j.triboint.2009.06.003

    Article  Google Scholar 

  7. Zhou, R., Cao, J., Wang, Q. J., Meng, F., Zimowski, K., & Xia, Z. C. (2011). Effect of EDT surface texturing on tribological behavior of aluminum sheet. Journal of Materials Processing Technology, 211, 1643–1649. https://doi.org/10.1016/j.jmatprotec.2011.05.004

    Article  Google Scholar 

  8. Balasubramaniam, R., Krishnan, J., & Ramakrishnan, N. (2002). A study on the shape of the surface generated by abrasive jet machining. Journal of Materials Processing Technology, 121, 102–106. https://doi.org/10.1016/S0924-0136(01)01209-2

    Article  Google Scholar 

  9. Wakuda, M., Yamauchi, Y., Kanzaki, S., & Yasuda, Y. (2003). Effect of surface texturing on friction reduction between ceramic and steel materials under lubricated sliding contact. Wear, 254, 356–363. https://doi.org/10.1016/S0043-1648(03)00004-8

    Article  Google Scholar 

  10. Byun, J. W., Shin, H. S., Kwon, M. H., Kim, B. H., & Chu, C. N. (2010). Surface texturing by micro ECM for friction reduction. International Journal of Precision Engineering and Manufacturing, 11, 747–753. https://doi.org/10.1007/s12541-010-0088-y

    Article  Google Scholar 

  11. Pettersson, U., & Jacobson, S. (2003). Influence of surface texture on boundary lubricated sliding contacts. Tribology International, 36, 857–864. https://doi.org/10.1016/S0301-679X(03)00104-X

    Article  Google Scholar 

  12. Kurniawan, R., & Ko, T. J. (2013). A study of surface texturing using piezoelectric tool holder actuator on conventional CNC turning. International Journal of Precision Engineering and Manufacturing, 14, 199–206. https://doi.org/10.1007/s12541-013-0028-8

    Article  Google Scholar 

  13. Dornfeld, D., Min, S., & Takeuchi, Y. (2006). Recent advances in mechanical micromachining. CIRP Annal-Manufacturing Technology, 55, 745–768. https://doi.org/10.1016/j.cirp.2006.10.006

    Article  Google Scholar 

  14. Greco, A., Raphaelson, S., Ehmann, K., Wang, Q. J., & Lin, C. (2009). Surface Texturing of tribological interfaces using the vibromechanical texturing method. Journal of Manufacturing Science and Engineering, 131, 061005. https://doi.org/10.1115/1.4000418

    Article  Google Scholar 

  15. Gandhi, R., Sebastian, D., Basu, S., Mann, J. B., Iglesias, P., & Saldana, C. (2016). Surfaces by vibration/modulation-assisted texturing for tribological applications. International Journal of Advanced Manufacturing Technology, 85, 909–920. https://doi.org/10.1007/s00170-015-7968-3

    Article  Google Scholar 

  16. Kurniawan, R., Ko, T. J., Ping, L. C., Kumaran, S. T., Kiswanto, G., Guo, P., & Ehmann, K. F. (2017). Development of a two-frequency, elliptical-vibration texturing device for surface texturing. Journal of Mechanical Science and Technology, 31, 3465–3473. https://doi.org/10.1007/s12206-017-0635-x

    Article  Google Scholar 

  17. Shamoto, E., & Moriwaki, T. (1999). Ultraprecision diamond cutting of hardened steel by applying elliptical vibration cutting. CIRP Annals–Manufacturing and Technology, 48, 441–444. https://doi.org/10.1016/S0007-8506(07)63222-3

    Article  Google Scholar 

  18. Shamoto, E., Suzuki, N., Moriwaki, T., & Naoi, Y. (2002). Development of ultrasonic elliptical vibration controller for elliptical vibration cutting. CIRP Annals–Manufacturing and Technology, 51, 327–330. https://doi.org/10.1016/S0007-8506(07)61528-5

    Article  Google Scholar 

  19. Nath, C., Rahman, M., & Neo, K. S. (2009). A study on ultrasonic elliptical vibration cutting of tungsten carbide. Journal of Materials Processing Technology, 209, 4459–4464. https://doi.org/10.1016/j.jmatprotec.2008.10.047

    Article  Google Scholar 

  20. Shamoto, E., & Moriwaki, T. (1994). Study on elliptical vibration cutting. CIRP Ann- Manufacture Technology, 43, 35–38. https://doi.org/10.1016/S0007-8506(07)62158-1

    Article  Google Scholar 

  21. Chen, T., Liu, S., Liu, W., & Wu, C. (2017). Study on a longitudinal-torsional ultrasonic vibration system with diagonal slits. Advances in Mechanical Engineering, 9, 1–10. https://doi.org/10.1177/1687814017706341

    Article  Google Scholar 

  22. Tan, R., Zhao, X., Zou, X., & Sun, T. (2018). A novel ultrasonic elliptical vibration cutting device based on a sandwiched and symmetrical structure. International Journal of Advanced Manufacturing Technology, 97, 1397–1406. https://doi.org/10.1007/s00170-018-2015-9

    Article  Google Scholar 

  23. Guo, P., & Ehmann, K. F. (2013). Development of a tertiary motion generator for elliptical vibration texturing. Precision Engineering, 37, 364–371. https://doi.org/10.1016/j.precisioneng.2012.10.005

    Article  Google Scholar 

  24. Yang, Y., Gao, S., Chen, K., Pan, Y., & Guo, P. (2017). Vibration analysis and development of an ultrasonic elliptical vibration tool based on a portal frame structure. Precision Engineering, 50, 421–432. https://doi.org/10.1016/j.precisioneng.2017.06.016

    Article  Google Scholar 

  25. Yin, Z., Fu, Y., Xu, J., Li, H., Cao, Z., & Chen, Y. (2017). A novel single driven ultrasonic elliptical vibration cutting device. International Journal of Advanced Manufacturing Technology, 90, 3289–3300. https://doi.org/10.1007/s00170-016-9641-x

    Article  Google Scholar 

  26. Yang, X., Liu, Y., Chen, W., & Liu, J. (2013). Longitudinal and bending hybrid linear ultrasonic motor using bending PZT elements. Ceramics International, 39, S691–S694. https://doi.org/10.1016/j.ceramint.2012.10.163

    Article  Google Scholar 

  27. Shuyu, L. (1995). Study on the multifrequency Langevin ultrasonic transducer. Ultrasonics, 33, 445–448. https://doi.org/10.1016/0041-624X(95)00051-4

    Article  Google Scholar 

  28. Kurniawan, R., Ali, S., & Ko, T. J. (2018). Modal simulation analysis of novel 3D elliptical ultrasonic transducer. IOP Conference Series Material Science and Engineering. https://doi.org/10.1088/1757-899X/324/1/012063

    Article  Google Scholar 

  29. Zhou Errata, X., Zuo, C., Liu, Q., & Lin, J. (2016). Surface generation of freeform surfaces in diamond turning by applying double-frequency elliptical vibration cutting. International Journal of Machine Tools and Manufacture, 104, 45–57. https://doi.org/10.1016/j.ijmachtools.2015.11.012

    Article  Google Scholar 

  30. Zhou, X., Zuo, C., Liu, Q., Wang, R., & Lin, J. (2016). Development of a double-frequency elliptical vibration cutting apparatus for freeform surface diamond machining. The International Journal of Advanced Manufacturing Technology. https://doi.org/10.1007/s00170-016-8596-2

    Article  Google Scholar 

  31. Kurniawan, R., Kiswanto, G., & Ko, T. J. (2017). Surface roughness of two-frequency elliptical vibration texturing (TFEVT) method for micro-dimple pattern process. International Journal of Machine Tools and Manufacture, 116, 77–95. https://doi.org/10.1016/j.ijmachtools.2016.12.011

    Article  Google Scholar 

  32. Zhu, Z., Zhou, X., Liu, Q., & Zhao, S. (2011). Multi-objective optimum design of fast tool servo based on improved differential evolution algorithm. Journal of Mechanical Science and Technology, 25, 3141–3149. https://doi.org/10.1007/s12206-011-0824-y

    Article  Google Scholar 

  33. He, Y., Zou, P., Zhu, Z., Le Zhu, W., Yang, X., Cao, J., & Ehmann, K. F. (2018). Design and application of a flexure-based oscillation mechanism for surface texturing. Journal of Manufacturing Processes, 32, 298–306. https://doi.org/10.1016/j.jmapro.2018.02.017

    Article  Google Scholar 

  34. Etsion, I. (2004). Improving tribological performance of mechanical components by laser surface texturing. Tribology Letters, 17, 733–737. https://doi.org/10.1007/s11249-004-8081-1

    Article  Google Scholar 

  35. Yan, H., Abdul Rashid, M. R. B., Khew, S. Y., Li, F., & Hong, M. (2018). Wettability transition of laser textured brass surfaces inside different mediums. Applied Surface Science, 427, 369–375. https://doi.org/10.1016/j.apsusc.2017.08.218

    Article  Google Scholar 

  36. Hosseinabadi, H. N., Sajjady, S. A., & Amini, S. (2018). Creating micro textured surfaces for the improvement of surface wettability through ultrasonic vibration assisted turning. International Journal of Advanced Manufacturing Technology, 96, 2825–2839. https://doi.org/10.1007/s00170-018-1580-2

    Article  Google Scholar 

  37. Lu, Y., Guo, P., Pei, P., & Ehmann, K. F. (2015). Experimental studies of wettability control on cylindrical surfaces by elliptical vibration texturing. International Journal of Advanced Manufacturing Technology, 76, 1807–1817. https://doi.org/10.1007/s00170-014-6384-4

    Article  Google Scholar 

  38. Kurniawan, R., Ali, S., & Ko, T. J. (2020). Measurement of wettability on rhombohedral pattern fabricated by using 3D-UEVT. Measurement, 160, 107784. https://doi.org/10.1016/j.measurement.2020.107784

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) and funded by the Ministry of Science, ICT, and Future Planning (grant number NRF-2020 R1A2B5B02001755).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae Jo Ko.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, S., Kurniawan, R. & Ko, T.J. Development of 3D Resonant Elliptical Vibration Transducer for Dual-Frequency Micro-Dimple Surface Texturing. Int. J. Precis. Eng. Manuf. 22, 1365–1379 (2021). https://doi.org/10.1007/s12541-021-00551-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-021-00551-9

Keywords

Navigation