Skip to main content
Log in

Performance Evaluation of Different Environmental Conditions on Output Characteristics During Turning of EN-24 Steel

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

The present study investigated the effect of different machining environments such as dry, wet, cryogenic cooling, minimum quantity lubrication (MQL), Al2O3 nanofluids with MQL, CuO nanofluids with MQL and Al–CuO hybrid nanofluids with MQL on machining performance characteristics during turning of EN-24 steel. The nanofluids and hybrid nanofluids were prepared by adding different weight percentages (0.2 wt%, 0.4 wt%, 0.6 wt%) of Al2O3, CuO and Al–CuO to the soluble oil. The thermal and tribological properties of soluble oil, nanofluids and hybrid nanofluids were analysed. The thermal conductivity of Al–CuO hybrid nanofluids was more compared with Al2O3, CuO nanofluids. The specific heat of Al–CuO hybrid nanofluids was less compared with Al2O3, CuO nanofluids. The comparative analysis of machining performance was done during turning under different environments. Experimental results reveal that the turning performance under Al–CuO hybrid nanofluids with MQL was better as compared to other machining environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Thirumalai, R., Senthilkumaar, J. S., Selvarani, P., & Ramesh, S. (2013). Machining characteristics of Inconel 718 under several cutting conditions based on Taguchi method. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 227(9), 1889–1897.

    Google Scholar 

  2. Astakgov, V. P. (Ed.). (2008). Ecological machining: Near dry machining. In Book machining: Fundamentals and recent advances. London: Springer, pp. 195–223.

  3. Ramesh, S., Palanikumar, K., Elangovan, K., & Karunamoorthy, L. (2008). Machining titanium alloy with pulsed injecting coolant technique to improve a eco-friendly environment in industries. In Proceedings of the 19th AeroMat conference and exposition.

  4. Kline and Company, Inc. (2006). Competitive intelligence for the global lubricants industry (pp. 4–14). Parsippany: Kline and company.

    Google Scholar 

  5. Yildiz, Y., & Nalbant, M. (2008). A review of cryogenic cooling in machining processes. International Journal of Machine Tool and Manufacturing, 48(9), 947–964.

    Article  Google Scholar 

  6. Hong, S. Y. (1999). Milling tool with rotary cryogenic coolant coupling, Patent Cooperation Treaty (PCT), WO 99/60079.

  7. Hong, S. Y. (2001). Economical and ecological cryogenic machining. Journal of Manufacturing Science and Engineering, 123(2), 331–338.

    Article  Google Scholar 

  8. Dhar, N. R., Paul, S., & Chattopadhyay, A. B. (2002). Role of cryogenic cooling on cutting temperature in turning steel. Journal of Manufacturing Science and Engineering, 124(1), 146–154.

    Article  Google Scholar 

  9. Paul, S., Dhar, N. R., & Chattopadhyay, A. B. (2001). Beneficial effects of cryogenic cooling over dry and wet machining on tool wear and surface finish in turning AISI 1060 steel. Journal of Materials Processing and Technology, 116(1), 44–48.

    Article  Google Scholar 

  10. Dhar, N. R., & Kamruzzaman, M. (2007). Cutting temperature, tool wear, surface roughness and dimensional deviation in turning AISI-4037 steel under cryogenic condition. International Journal of Machine Tool and Manufacturing, 47(5), 754–759.

    Article  Google Scholar 

  11. Hong, S. Y., & Zhao, Z. (1999). Thermal aspects, material considerations and cooling strategies in cryogenic machining. Clean Products and Processes, 1, 107–116.

    Google Scholar 

  12. Klocke, F., Lung, D., Arft, M., Priarone, P. C., & Settineri, L. (2013). On high-speed turning of a third-generation gamma titanium aluminide. International Journal of Advanced Manufacturing Technology, 64, 155–163.

    Article  Google Scholar 

  13. Umbrello, D., Micari, F., & Jawahir, I. S. (2012). The effects of cryogenic cooling on surface integrity in hard machining: A comparison with dry machining. CIRP Annals Manufacturing Technology, 61, 103–106.

    Article  Google Scholar 

  14. Leadebal, W. V., Jr., de Melo, A. C. A., de Oliveira, A. J., & Castro, N. A. (2018). Effects of cryogenic cooling on the surface integrity in hard turning of AISI D6 steel. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(1), 15.

    Article  Google Scholar 

  15. Khan, M. M. A., & Dhar, N. R. (2006). Performance evaluation of minimum quantity lubrication by vegetable oil in terms of cutting force, cutting zone temperature, tool wear, job dimension and surface finish in turning AISI-1060 steel. Journal of Zhejiang University Science A, 7(11), 1790–1799.

    Article  Google Scholar 

  16. Maruda, R. W., Feldshtein, E., Legutko, S., & Krolczyk, G. M. (2016). Analysis of contact phenomena and heat exchange in the cutting zone under minimum quantity cooling lubrication conditions. Arabian Journal for Science and Engineering, 41(2), 661–668.

    Article  Google Scholar 

  17. Yıldırım, Ç. V., Kıvak, T., Sarıkaya, M., & Erzincanlı, F. (2017). Determination of MQL parameters contributing to sustainable machining in the milling of nickel-base superalloy was paloy. Arabian Journal for Science and Engineering, 42(11), 4667–4681.

    Article  Google Scholar 

  18. Dhar, N. R., Kamruzzaman, M., & Ahmed, M. (2006). Effect of minimum quantity lubrication (MQL) on tool wear and surface roughness in turning AISI-4340 steel. Journal of Materials Processing and Technology, 172(2), 299–304.

    Article  Google Scholar 

  19. Attanasio, A., Gelfi, M., Giardini, C., & Remino, C. (2006). Minimal quantity lubrication in turning: Effect on tool wear. Wear, 260(3), 333–338.

    Article  Google Scholar 

  20. Dhar, N. R., Ahmed, M. T., & Islam, S. (2007). An experimental investigation on effect of minimum quantity lubrication in machining AISI 1040 steel. International Journal of Machine Tool and Manufacturing, 47(5), 748–753.

    Article  Google Scholar 

  21. Davim, J. P., Sreejith, P. S., & Silva, J. (2007). Turning of brasses using minimum quantity of lubricant (MQL) and flooded lubricant conditions. Material and Manufacturing Processes, 22(1), 45–50.

    Article  Google Scholar 

  22. Khan, M. M. A., Mithu, M. A. H., & Dhar, N. R. (2009). Effects of minimum quantity lubrication on turning AISI 9310 alloy steel using vegetable oil-based cutting fluid. Journal of Materials Processing and Technology, 209(15–16), 5573–5583.

    Article  Google Scholar 

  23. Ji, X., Li, B., Zhang, X., & Liang, S. Y. (2014). The effects of minimum quantity lubrication (MQL) on machining force, temperature, and residual stress. International Journal of Precision Engineering and Manufacturing, 15(11), 2443–2451.

    Article  Google Scholar 

  24. Liao, Y. S., Liao, C. H., & Lin, H. M. (2017). Study of oil-water ratio and flow rate of MQL fluid in high speed milling of Inconel 718. International Journal of Precision Engineering and Manufacturing, 18(2), 257–262.

    Article  Google Scholar 

  25. Nguyen, T. K., Do, I., & Kwon, P. A. (2012). Tribological study of vegetable oil enhanced by nano-platelets and implication in MQL machining. International Journal of Precision Engineering and Manufacturing, 13(7), 1077–1083.

    Article  Google Scholar 

  26. Viswanathan, R., Ramesh, S., & Subburam, V. (2018). Measurement and optimization of performance characteristics in turning of Mg alloy under dry and MQL conditions. Measurement, 120, 107–113.

    Article  Google Scholar 

  27. Hadad, M., & Sadeghi, B. (2013). Minimum quantity lubrication-MQL turning of AISI 4140 steel alloy. Journal of Cleaner Production, 54, 332–343.

    Article  Google Scholar 

  28. Al Kalbani, K. S., & Rahman, M. M. (2018). Investigation of the local thermal non equilibrium conditions for a convective heat transfer flow in an inclined square enclosure filled with Cu–Water Nanofluids. Arabian Journal for Science and Engineering, 1–5.

  29. Kim, H. J., Seo, K. J., Kang, K. H., & Kim, D. E. (2016). Nano-lubrication: A review. International Journal of Precision Engineering and Manufacturing, 17(6), 829–841.

    Article  Google Scholar 

  30. Hamida, M. B., Belghaieb, J., & Hajji, N. (2018). Heat and mass transfer enhancement for falling film absorption process in vertical plate absorber by adding copper nanoparticles. Arabian Journal for Science and Engineering, 43, 4991–5001.

    Article  Google Scholar 

  31. Nam, J. S., Lee, P. H., & Lee, S. W. (2011). Experimental characterization of micro-drilling process using nanofluids minimum quantity lubrication. International Journal of Machine Tool and Manufacturing, 51(7–8), 649–652.

    Article  Google Scholar 

  32. Mia, M., Al Bashir, M., Khan, M. A., & Dhar, N. R. (2017). Optimization of MQL flow rate for minimum cutting force and surface roughness in end milling of hardened steel (HRC 40). International Journal Advanced Manufacturing Technology, 89(1–4), 675–690.

    Article  Google Scholar 

  33. Najiha, M. S., Rahman, M. M., & Kadirgama, K. (2016). Performance of water-based TiO2 nanofluids during the minimum quantity lubrication machining of aluminium alloy, AA6061-T. Journal of Cleaner Production, 135, 1623–1636.

    Article  Google Scholar 

  34. Lee, P. H., Nam, J. S., Li, C., & Lee, S. W. (2012). An experimental study on micro-grinding process with nanofluids minimum quantity lubrication (MQL). International Journal of Precision Engineering and Manufacturing, 13(3), 331–338.

    Article  Google Scholar 

  35. Vasu, V., & Pradeep Kumar Reddy, G. (2011). Effect of minimum quantity lubrication with Al2O3 nanoparticles on surface roughness, tool wear and temperature dissipation in machining Inconel 600 alloy. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nano engineering and Nanosystems, 225(1), 3–16.

    Google Scholar 

  36. Amrita, M., Srikant, R. R., Sitaramaraju, A. V., Prasad, M. M. S., & Krishna, P. V. (2013). Experimental investigations on influence of mist cooling using nanofluids on machining parameters in turning AISI 1040 steel. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 227(12), 1334–1346.

    Article  Google Scholar 

  37. Sharma, P., Sidhu, B. S., & Sharma, J. (2015). Investigation of effects of nanofluids on turning of AISI D2 steel using minimum quantity lubrication. Journal of Cleaner Production, 108, 72–79.

    Article  Google Scholar 

  38. Khandekar, S., Sankar, M. R., Agnihotri, V., & Ramkumar, J. (2012). Nano-cutting fluid for enhancement of metal cutting performance. Journal of Manufacturing Processes, 27(9), 963–967.

    Article  Google Scholar 

  39. Sharma, A. K., Singh, R. K., Dixit, A. R., & Tiwari, A. K. (2017). Novel uses of alumina-MoS2 hybrid nanoparticle enriched cutting fluid in hard turning of AISI 304 steel. Journal of Manufacturing Processes, 30, 467–482.

    Article  Google Scholar 

  40. Sharma, A. K., Tiwari, A. K., Dixit, A. R., Singh, R. K., & Singh, M. (2018). Novel uses of alumina/graphene hybrid nanoparticle additives for improved tribological properties of lubricant in turning operation. Tribology International, 119, 99–111.

    Article  Google Scholar 

  41. Kanthavel, K., Sumesh, K., & Saravanakumar, P. (2016). Study of tribological properties on Al/Al2O3/MoS2 hybrid composite processed by powder metallurgy. Alexandria Engineering Journal, 55, 13–17.

    Article  Google Scholar 

  42. Singh, R. K., Sharma, A. K., Dixit, A. R., Tiwari, A. K., Pramanik, A., & Mandal, A. (2017). Performance evaluation of alumina-graphene hybrid nano-cuttingfluid in hard turning. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2017.06.104.

    Google Scholar 

  43. Choi, S. U., & Eastman, J. A. (1995). Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP–84938; CONF-951135–29). Lemont, IL: Argonne National Lab.

    Google Scholar 

  44. Kalpakjain, S., Schmid, S. R., & Sekar, K. S. V. (2014). Manufacturing engineering and technology. Agenda 2014.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Archana Thakur.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, A., Manna, A. & Samir, S. Performance Evaluation of Different Environmental Conditions on Output Characteristics During Turning of EN-24 Steel. Int. J. Precis. Eng. Manuf. 20, 1839–1849 (2019). https://doi.org/10.1007/s12541-019-00179-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-019-00179-w

Keywords

Navigation