Skip to main content
Log in

Absolute Distance Meter Operating on a Free-Running Mode-Locked Laser for Space Mission

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

We report a working prototype of absolute distance meter developed for outer-space operation by incorporating a fiber-type modelocked laser. The target distance is measured using a 1 GHz synthetic radio frequency (~0.3 m wavelength) provided by the 20th intermode harmonic of a 50 MHz pulse repetition rate. The measurement repeatability is 7 μm at 1 s averaging with an accuracy of ±20 μm for a 2.5 m target distance. With a 100 Hz update rate, the measurement speed is fast enough to keep track of the target in motion with up to a 1.0 m/s velocity. The prototype is built within a compact volume of A4-size footprint to be feasible for the space mission of satellite-to-satellite distance measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

SWI:

synthetic wavelength interferometer

IDM:

incremental-type displacement measurement

ADM:

absolute distance measurement

L :

measured distance

PD:

photo diode

CL:

collimating lens

HWP:

half wave plate

PBS:

polarization beam splitter

QWP:

quarter wave plate

RR:

retro reflector

FSM:

fast steering mirror

PSD:

position sensitive detector

HPF:

high pass filter

BM:

balanced mixer

LPF:

low pass filter

AMP:

RF amplifier

LO:

local oscillator

FPGA:

field programmable gate array

References

  1. Gao, W., Kim, S., Bosse, H., Haitjema, H., Chen, Y., et al., “Measurement Technologies for Precision Positioning,” CIRP Annals, Vol. 64, No. 2, pp. 773–796, 2015.

    Article  Google Scholar 

  2. Bobroff, N., “Recent Advances in Displacement Measuring Interferometry,” Measurement Science and Technology, Vol. 4, No. 9, pp. 907–926, 1993.

    Article  Google Scholar 

  3. Bender, P. L., Currie, D. G., Poultney, S. K., Alley, C. O., Dicke, R. H., et al., “The Lunar Laser Ranging Experiment,” Science, Vol. 182, No. 4109, pp. 229–238, 1973.

    Article  Google Scholar 

  4. Dändliker, R., Thalmann, R., and Prongué, D., “Two-Wavelength Laser Interferometry Using Superheterodyne Detection,” Optics Letters, Vol. 13, No. 5, pp. 339–341, 1988.

    Article  Google Scholar 

  5. Kikuta, H., Iwata, K., and Nagata, R., “Distance Measurement by the Wavelength Shift of Laser Diode Light,” Applied Optics, Vol. 25, No. 17, pp. 2976–2980, 1986.

    Article  Google Scholar 

  6. Fujima, I., Iwasaki, S., and Seta, K., “High-Resolution Distance Meter Using Optical Intensity Modulation at 28 GHZ,” Measurement Science and Technology, Vol. 9, No. 7, pp. 1049–1052, 1998.

    Article  Google Scholar 

  7. Diddams, S. A., Jones, D. J., Ye, J., Cundiff, S. T., Hall, J. L., Ranka, J. K., et a., “Direct Link between Microwave and Optical Frequencies with a 300 THz Femtosecond Laser Comb,” Physical Review Letters, Vol. 84, No. 22, pp. 5102–5105, 2000.

    Article  Google Scholar 

  8. Kim, S.-W., “Metrology: Combs Rule,” Nature Photonics, Vol. 3, No. 6, pp. 313–314, 2009.

    Article  Google Scholar 

  9. Minoshima, K., and Matsumoto, H., “High-Accuracy Measurement of 240-m Distance in an Optical Tunnel by Use of a Compact Femtosecond Laser,” Applied Optics, Vol. 39, No. 30, pp. 5512–5517, 2000.

    Article  Google Scholar 

  10. Doloca, N. R., Meiners-Hagen, K., Wedde, M., Pollinger, F., and Abou-Zeid, A., “Absolute Distance Measurement System Using a Femtosecond Laser as a Modulator,” Measurement Science and Technology, Vol. 21, No. 11, Paper No. 115302, 2010.

    Google Scholar 

  11. Jang, Y.-S., Lee, K., Han, S., Lee, J., Kim, Y.-J., and Kim, S.-W., “Absolute Distance Measurement with Extension of Nonambiguity Range Using the Frequency Comb of a Femtosecond Laser,” Optical Engineering, Vol. 53, No. 12, Paper No. 122403, 2014.

    Google Scholar 

  12. Schuhler, N., Salvadé, Y., Lévêque, S., Dändliker, R., and Holzwarth, R., “Frequency-Comb-Referenced Two-Wavelength Source for Absolute Distance Measurement,” Optics Letters, Vol. 31, No. 21, pp. 3101–3103, 2006.

    Article  Google Scholar 

  13. Jin, J., Kim, Y.-J., Kim, Y., and Kim, S.-W., “Absolute Distance Measurements Using the Optical Comb of a Femtosecond Pulse Laser,” International Journal of Precision Engineering and Manufacturing, Vol. 8, No. 4, pp. 22–26, 2007.

    Google Scholar 

  14. Wang, G., Jang, Y.-S., Hyun, S., Chun, B. J., Kang, H. J., et al., “Absolute Positioning by Multi-Wavelength Interferometry Referenced to the Frequency Comb of a Femtosecond Laser,” Optics Express, Vol. 23, No. 7, pp. 9121–9129, 2015.

    Article  Google Scholar 

  15. Jang, Y.-S., Wang, G., Hyun, S., Kang, H. J., Chun, B. J., et al., “Comb-Referenced Laser Distance Interferometer for Industrial Nanotechnology,” Scientific Reports, Vol. 6, Article No. 31770, 2016.

  16. Joo, K.-N. and Kim, S.-W., “Absolute Distance Measurement by Dispersive Interferometry Using a Femtosecond Pulse Laser,” Optics Express, Vol. 14, No. 13, pp. 5954–5960, 2006.

    Article  Google Scholar 

  17. Van den Berg, S., Persijn, S., Kok, G., Zeitouny, M., and Bhattacharya, N., “Many-Wavelength Interferometry with Thousands of Lasers for Absolute Distance Measurement,” Physical Review Letters, Vol. 108, No. 18, Paper No. 183901, 2012.

    Google Scholar 

  18. Yun, Y. H., Kim, D. H., and Joo, K.-N., “Optimal Dispersion Condition to Distinguish OPD Directions of Spectrally-Resolved Interferometry,” Journal of the Korean Society for Precision Engineering, Vol. 34, No. 4, pp. 259–264, 2017.

    Article  Google Scholar 

  19. Coddington, I., Swann, W. C., Nenadovic, L., and Newbury, N. R., “Rapid and Precise Absolute Distance Measurements at Long Range,” Nature Photonics, Vol. 3, No. 6, pp. 351–356, 2009.

    Article  Google Scholar 

  20. Liu, T.-A., Newbury, N. R., and Coddington, I., “Sub-Micron Absolute Distance Measurements in Sub-Millisecond Times with Dual Free-Running Femtosecond Er Fiber-Lasers,” Optics Express, Vol. 19, No. 19, pp. 18501–18509, 2011.

    Article  Google Scholar 

  21. Lee, J., Kim, Y.-J., Lee, K., Lee, S., and Kim, S.-W., “Time-of-Flight Measurement with Femtosecond Light Pulses,” Nature Photonics, Vol. 4, No. 10, pp. 716–720, 2010.

    Article  Google Scholar 

  22. Chanthawong, N., Takahashi, S., Takamasu, K., and Matsumoto, H., “Performance Evaluation of a Coordinate Measuring Machine’s Axis Using a High-Frequency Repetition Mode of a Mode-Locked Fiber Laser,” International Journal of Precision Engineering and Manufacturing, Vol. 15, No. 8, pp. 1507–1512, 2014.

    Article  Google Scholar 

  23. Park, C. H., Song, C. K., Hwang, J., and Kim, B.-S., “Development of an Ultra Precision Machine Tool for Micromachining on Large Surfaces,” International Journal of Precision Engineering and Manufacturing, Vol. 10, No. 4, pp. 85–91, 2009.

    Article  Google Scholar 

  24. Kang, H. S., Lee, J. Y., Choi, S., Kim, H., Park, J. H., et al., “Smart Manufacturing: Past Research, Present Findings, and Future Directions,” International Journal of Precision Engineering and Manufacturing-Green Technology, Vol. 3, No. 1, pp. 111–128, 2016.

    Article  Google Scholar 

  25. Lee, J.-C., Lee, H.-H., and Yang, S.-H., “Total Measurement of Geometric Errors of a Three-Axis Machine Tool by Developing a Hybrid Technique,” International Journal of Precision Engineering and Manufacturing, Vol. 17, No. 4, pp. 427–432, 2016.

    Article  Google Scholar 

  26. Franceschini, F., Galetto, M., Maisano, D., and Mastrogiacomo, L., “Large-Scale Dimensional Metrology (LSDM): From Tapes and Theodolites to Multi-Sensor Systems,” International Journal of Precision Engineering and Manufacturing, Vol. 15, No. 8, pp. 1739–1758, 2014.

    Article  Google Scholar 

  27. Lee, J., Lee, K., Jang, Y.-S., Jang, H., Han, S., et al., “Testing of a Femtosecond Pulse Laser in Outer Space,” Scientific Reports, Vol. 4, Article No. 5134, 2014.

  28. Jang, Y.-S., Lee, J., Kim, S., Lee, K., Han, S., et al., “Space Radiation Test of Saturable Absorber for Femtosecond Laser,” Optics Letters, Vol. 39, No. 10, pp. 2831–2834, 2014.

    Article  Google Scholar 

  29. Lezius, M., Wilken, T., Deutsch, C., Giunta, M., Mandel, O., et al., “Space-Borne Frequency Comb Metrology,” Optica, Vol. 3, No. 12, pp. 1381–1387, 2016.

    Article  Google Scholar 

  30. Krieger, G., Moreira, A., Fiedler, H., Hajnsek, I., Werner, M., et al., “TanDEM-X: A Satellite Formation for High-Resolution SAR Interferometry,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 45, No. 11, pp. 3317–3341, 2007.

    Article  Google Scholar 

  31. Jang, H., Jang, Y.-S., Kim, S., Lee, K., Han, S., Kim, Y.-J., and Kim, S.-W., “Polarization Maintaining Linear Cavity Er-Doped Fiber Femtosecond Laser,” Laser Physics Letters, Vol. 12, No. 10, Paper No. 105102, 2015.

    Google Scholar 

  32. Ciddor, P. E., “Refractive Index of Air: New Equations for the Visible and Near Infrared,” Applied Optics, Vol. 35, No. 9, pp. 1566–1573, 1996.

    Article  Google Scholar 

  33. Jang, Y.-S. and Kim, S.-W., “Compensation of the Refractive Index of Air in Laser Interferometer for Distance Measurement: A Review,” International Journal of Precision Engineering and Manufacturing, Vol. 18, No. 12, pp. 1881–1890, 2017.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Woo Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, YS., Kim, W., Jang, H. et al. Absolute Distance Meter Operating on a Free-Running Mode-Locked Laser for Space Mission. Int. J. Precis. Eng. Manuf. 19, 975–981 (2018). https://doi.org/10.1007/s12541-018-0115-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-018-0115-y

Keywords

Navigation