Skip to main content
Log in

Synthesis of cellulose-L-tyrosine-SiO2/ZrO2 hybrid nanocomposites by sol-gel process and its potential

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

Cellulose is an excellent natural biopolymer that can be modified to organic-inorganic hybrid nanocomposites by connecting nanomaterials to hydroxyl structure to improve the thermal, morphological, optical and biological properties. Based on the unique properties of oxide materials, we selected SiO2 and ZrO2, which has a large bandgap and a high dielectric constant. To modify the cellulose structure, we used an in-situ sol-gel process to form a cellulose-L-tyrosine (CE-L-tyr) and further synthesized hybrid cellulose-L-tyrosine-SiO2/ZrO2 nanocomposite materials by γ-aminopropyl triethoxysilane (γ-APTES) as coupling agent in the presence of tetraethoxysilane (TEOS) and zirconium isopropoxide. The cellulose-L-tyrosine-SiO2/ZrO2 hybrid nanocomposites were characterized by FTIR, XPS, XRD, UV, TGA, DSC, SEM, EDX and TEM measurements. The different analysis results show the optical transparency, thermal stability, and control morphology of hybrid nanocomposites. From antimicrobial test, CE-L-tyr-SiO2/ZrO2 hybrid nanocomposites exhibit stronger activity against Bacillus cereus and E. coli than that Lactobacillus and Pseudomonas aeruginosa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Faruk, O., Bledzki, A. K., Fink, H.-P., and Sain, M., “Biocomposites Reinforced with Natural Fibers: 2000-2010,” Progress in Polymer Science, Vol. 37, No. 11, pp. 1552–1596, 2012.

    Article  Google Scholar 

  2. Yun, S., Kim, J., and Lee, K.-S., “Evaluation of Cellulose Electro-Active Paper Made by Tape Casting and Zone Stretching Methods,” Int. J. Precis. Eng. Manuf., Vol. 11, No. 6, pp. 987–990, 2010.

    Article  Google Scholar 

  3. Lavoine, N., Desloges, I., Dufresne, A., and Bras, J., “Microfibrillated Cellulose-Its Barrier Properties and Applications in Cellulosic Materials: A Review,” Carbohydrate Polymers, Vol. 90, No. 2, pp. 735–764, 2012.

    Article  Google Scholar 

  4. Kim, H. S., Kim, J.-H., and Kim, J., “A Review of Piezoelectric Energy Harvesting Based on Vibration,” Int. J. Precis. Eng. Manuf., Vol. 12, No. 6, pp. 1129–1141, 2011.

    Article  Google Scholar 

  5. Siró, I. and Plackett, D., “Microfibrillated Cellulose and New Nanocomposite Materials: A Review,” Cellulose, Vol. 17, No. 3, pp. 459–494, 2010.

    Article  Google Scholar 

  6. Kim, J.-H., Shim, B. S., Kim, H. S., Lee, Y.-J., Min, S.-K., Jang, D., et al., “Review of Nanocellulose for Sustainable Future Materials,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 2, No. 2, pp. 197–213, 2015.

    Article  Google Scholar 

  7. Fortunati, E., Puglia, D., Monti, M., Peponi, L., Santulli, C., et al., “Extraction of Cellulose Nanocrystals from Phormium Tenax Fibres,” Journal of Polymers and the Environment, Vol. 21, No. 2, pp. 319–328, 2013.

    Article  Google Scholar 

  8. Gross, S. and Müller, K., “Sol-Gel Derived Silica-Based Organic-Inorganic Hybrid Materials As “Composite Precursors” for the Synthesis Of Highly Homogeneous Nanostructured Mixed Oxides: An Overview,” Journal of Sol-Gel Science and Technology, Vol. 60, No. 3, pp. 283–298, 2011.

    Article  Google Scholar 

  9. Hou, A., Shi, Y., and Yu, Y., “Preparation of the Cellulose/Silica Hybrid Containing Cationic Group by Sol-Gel Crosslinking Process and Its Dyeing Properties,” Carbohydrate Polymers, Vol. 77, No. 2, pp. 201–205, 2009.

    Article  Google Scholar 

  10. Sanchez, C., Belleville, P., Popall, M., and Nicole, L., “Applications of Advanced Hybrid Organic-Inorganic Nanomaterials: From Laboratory to Market,” Chemical Society Reviews, Vol. 40, No. 2, pp. 696–753, 2011.

    Article  Google Scholar 

  11. Yun, S., Jang, S.-D., Yun, G.-Y., Kim, J.-H., and Kim, J., “Paper Transistor Made with Covalently Bonded Multiwalled Carbon Nanotube and Cellulose,” Applied Physics Letters, Vol. 95, No. 10, Paper No. 104102, 2009.

    Article  Google Scholar 

  12. Ramesh, S. and Kim, J.-H., “Synthesis of Cellulose-L-Tyrosine-Silica Hybrid Nanocomposites by Sol-Gel Process for High Performance Applications,” Journal of Nanoscience and Nanotechnology, Vol. 14, No. 10, pp. 7558–7561, 2014.

    Article  Google Scholar 

  13. Kim, G.-H., Ramesh, S., Kim, J.-H., Jung, D., and Kim, H. S., “Cellulose-Silica/Gold Nanomaterials for Electronic Applications,” Journal of Nanoscience and Nanotechnology, Vol. 14, No. 10, pp. 7495–7501, 2014.

    Article  Google Scholar 

  14. Lin, X.-Z., Ren, T.-Z., and Yuan, Z.-Y., “Mesoporous Zirconium Phosphonate Materials as Efficient Water-Tolerable Solid Acid Catalysts,” Catalysis Science & Technology, Vol. 5, No. 3, pp. 1485–1494, 2015.

    Article  Google Scholar 

  15. Zhang, Y., Pan, L., Gao, C., Wang, Y., and Zhao, Y., “Preparation of ZrO2-SiO2 Mixed Oxide by Combination of Sol-Gel and Alcohol-Aqueous Heating Method and Its Application in Tetrahydrofuran Polymerization,” Journal of Sol-Gel Science and Technology, Vol. 56, No. 1, pp. 27–32, 2010.

    Article  Google Scholar 

  16. Zhan, Z. and Zeng, H. C., “A Catalyst-Free Approach for Sol-Gel Synthesis of Highly Mixed ZrO2-SiO2 Oxides,” Journal of Non-Crystalline Solids, Vol. 243, No. 1, pp. 26–38, 1999.

    Article  Google Scholar 

  17. Tyagi, B., Sidhpuria, K. B., Shaik, B., and Jasra, R. V., “Effect of Zr/Si Molar Ratio and Sulfation on Structural and Catalytic Properties of ZrO2-SiO2 Mixed Oxides,” Journal of Porous Materials, Vol. 17, No. 6, pp. 699–709, 2010.

    Article  Google Scholar 

  18. Saha, S. K. and Pramanik, P., “Aqueous Sol-Gel Synthesis of Powders in the ZrO2-SiO2 System Using Zirconium Formate and Tetraethoxysilane,” Journal of Non-Crystalline Solids, Vol. 159, Nos. 1-2, pp. 31–37, 1993.

    Article  Google Scholar 

  19. Del Monte, F., Larsen, W., and Mackenzie, J. D., “Chemical Interactions Promoting the ZrO2 Tetragonal Stabilization in ZrO2-SiO2 Binary Oxides,” Journal of the American Ceramic Society, Vol. 83, No. 6, pp. 1506–1512, 2000.

    Article  Google Scholar 

  20. Sumana, G., Das, M., Srivastava, S., and Malhotra, B., “A Novel Urea Biosensor Based on Zirconia,” Thin Solid Films, Vol. 519, No. 3, pp. 1187–1191, 2010.

    Article  Google Scholar 

  21. Yang, Y., Yang, H., Yang, M., Shen, G., and Yu, R., “Amperometric Glucose Biosensor Based on a Surface Treated Nanoporous ZrO2/Chitosan Composite Film as Immobilization Matrix,” Analytica Chimica Acta, Vol. 525, No. 2, pp. 213–220, 2004.

    Article  Google Scholar 

  22. Singh, M., Verma, N., Garg, A. K., and Redhu, N., “Urea Biosensors,” Sensors and Actuators B: Chemical, Vol. 134, No. 1, pp. 345–351, 2008.

    Article  Google Scholar 

  23. Debsikdar, J. C., “Transparent Zirconia Gel-Monolith from Zirconium Alkoxide,” Journal of Non-Crystalline Solids, Vol. 86, Nos. 1-2, pp. 231–240, 1986.

    Article  Google Scholar 

  24. Sanchez, C., Livage, J., Henry, M., and Babonneau, F., “Chemical Modification of Alkoxide Precursors,” Journal of Non-Crystalline Solids, Vol. 100, Nos. 1-3, pp. 65–76, 1988.

    Article  Google Scholar 

  25. Chu, W.-S., Kim, C.-S., Lee, H.-T., Choi, J.-O., Park, J.-I., et al., “Hybrid Manufacturing in Micro/Nano Scale: A Review,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 1, No. 1, pp. 75–92, 2014.

    Article  Google Scholar 

  26. Shukla, S., Seal, S., Vij, R., and Bandyopadhyay, S., “Effect of HPC and Water Concentration on the Evolution of Size, Aggregation and Crystallization of Sol-Gel Nano Zirconia,” Journal of Nanoparticle Research, Vol. 4, No. 6, pp. 553–559, 2002.

    Article  Google Scholar 

  27. Kim, H. S., Kim, J.-H., and Kim, J., “A Review of Piezoelectric Energy Harvesting Based on Vibration,” Int. J. Precis. Eng. Manuf., Vol. 12, No. 6, pp. 1129–1141, 2011.

    Article  Google Scholar 

  28. Yun, G.-Y., Kim, J.-H., and Kim, J., “Dielectric and Polarization Behaviour of Cellulose Electro-Active Paper (EaPap),” Journal of Physics D: Applied Physics, Vol. 42, No. 8, Paper No. 082003, 2009.

    Article  Google Scholar 

  29. Das-Gupta, D. K. and Doughty, K., “Polymer-Ceramic Composite Materials with High Dielectric Constants,” Thin Solid Films, Vol. 158, No. 1, pp. 93–105, 1988.

    Article  Google Scholar 

  30. Malecki, J. and Hilczer, B., “Dielectric Behaviour of Polymers and Composites,” Key Engineering Materials, Vols. 92-93, pp. 181–216, 1994.

    Article  Google Scholar 

  31. Okubo, T. and Nagamoto, H., “Low-Temperature Preparation of Nanostructured Zirconia and YSZ by Sol-Gel Processing,” Journal of Materials Science, Vol. 30, No. 3, pp. 749–757, 1995.

    Article  Google Scholar 

  32. Baker, C., Pradhan, A., Pakstis, L., Pochan, D. J., and Shah, S. I., “Synthesis and Antibacterial Properties of Silver Nanoparticles,” Journal of Nanoscience and Nanotechnology, Vol. 5, No. 2, pp. 244–249, 2005.

    Article  Google Scholar 

  33. Sulym, I., Goncharuk, O., Sternik, D., Skwarek, E., Derylo- Marczewska, A., et al., “Silica-Supported Titania-Zirconia Nanocomposites: Structural and Morphological Characteristics in Different Media,” Nanoscale Research Letters, Vol. 11, No. 1, pp. 111–120, 2016.

    Article  Google Scholar 

  34. Ahn, S.-H., Chun, D.-M., and Chu, W.-S., “Perspective to Green Manufacturing and Applications,” Int. J. Precis. Eng. Manuf., Vol. 14, No. 6, pp. 873–874, 2013.

    Article  Google Scholar 

  35. Gao, X., Fierro, J., and Wachs, I. E., “Structural Characteristics and Catalytic Properties of Highly Dispersed ZrO2/SiO2 and ViO2/ZrO2/SiO2 Catalysts,” Langmuir, Vol. 15, No. 9, pp. 3169–3178, 1999.

    Article  Google Scholar 

  36. Bae, J.-y., Kim, Y., Kim, H., Kim, Y., Jin, J., and Bae, B.-S., “Ultraviolet Light Stable and Transparent Sol-Gel Methyl Siloxane Hybrid Material for UV Light-Emitting Diode (UV LED) Encapsulant,” ACS Applied Materials & Interfaces, Vol. 7, No. 2, pp. 1035–1039, 2015.

    Article  Google Scholar 

  37. Costa, F., Fregonese, D., Agnello, S., and Cannas, M., “Stability of Sol-Gel Silica Glass for CPV and Ultraviolet LED Applications,” Glass Technology-European Journal of Glass Science and Technology Part A, Vol. 52, No. 6, pp. 185–189, 2011.

    Google Scholar 

  38. Nakamura, N., Sekine, M., Matsumoto, S., Watanabe, K., and Sugimoto, N., “Optical Characteristics of Spherical Glass Encapsulated LEDs,” Journal of the Ceramic Society of Japan, Vol. 116, No. 1358, pp. 1075–1078, 2008.

    Article  Google Scholar 

  39. Scheurell, K., Noack, J., König, R., Hegmann, J., Jahn, R., et al., “Optimisation of a Sol-Gel Synthesis Route for the Preparation of MgF2 Particles for a Large Scale Coating Process,” Dalton Transactions, Vol. 44, No. 45, pp. 19501–19508, 2015.

    Article  Google Scholar 

  40. Jandura, P., Riedl, B., and Kokta, B. V., “Thermal Degradation Behavior of Cellulose Fibers Partially Esterified with Some Long Chain Organic Acids,” Polymer Degradation and Stability, Vol. 70, No. 3, pp. 387–394, 2000.

    Article  Google Scholar 

  41. Yan, Y., Huang, Z., Dong, S., and Jiang, D., “New Route to Synthesize Ultra-Fine Zirconium Diboride Powders Using Inorganic-Organic Hybrid Precursors,” Journal of the American Ceramic Society, Vol. 89, No. 11, pp. 3585–3588, 2006.

    Article  Google Scholar 

  42. Dong, A., Huang, J., Lan, S., Wang, T., Xiao, L., et al., “Synthesis of N-Halamine-Functionalized Silica-Polymer Core-Shell Nanoparticles and their Enhanced Antibacterial Activity,” Nanotechnology, Vol. 22, No. 29, Paper No. 295602, 2011.

    Article  Google Scholar 

  43. Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., et al., “The Bactericidal Effect of Silver Nanoparticles,” Nanotechnology, Vol. 16, No. 10, pp. 2346–2353, 2005.

    Article  Google Scholar 

  44. Seleem, M. N., Munusamy, P., Ranjan, A., Alqublan, H., Pickrell, G., and Sriranganathan, N., “Silica-Antibiotic Hybrid Nanoparticles for Targeting Intracellular Pathogens,” Antimicrobial Agents and Chemotherapy, Vol. 53, No. 10, pp. 4270–4274, 2009.

    Article  Google Scholar 

  45. Li, P., Li, J., Wu, C., Wu, Q., and Li, J., “Synergistic Antibacterial Effects of β-Lactam Antibiotic Combined with Silver Nanoparticles,” Nanotechnology, Vol. 16, No. 9, pp. 1912–1917, 2005.

    Article  Google Scholar 

  46. Ahmed Mosselhy, D., Ge, Y., Gasik, M., Nordström, K., Natri, O., and Hannula, S.-P., “Silica-Gentamicin Nanohybrids,” Vol. 9, No. 3, 170, 2016. (DOI: 10.3390/ma9030170)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Heung Soo Kim or Joo-Hyung Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramesh, S., Kim, H.S., Lee, YJ. et al. Synthesis of cellulose-L-tyrosine-SiO2/ZrO2 hybrid nanocomposites by sol-gel process and its potential. Int. J. Precis. Eng. Manuf. 18, 1297–1306 (2017). https://doi.org/10.1007/s12541-017-0153-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-017-0153-x

Keywords

Navigation