Skip to main content
Log in

Preparation of lidocaine-loaded porous Poly (lactic-co-glycolic acid) microparticles using microfluidic flow focusing and phosphate buffer solution porogen

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

Local anesthesia is widely used in the treatment of postoperative pain. Long time duration and constant release of the local anesthetic is important for pain control. In this study, a preparation method of porous Poly (lactic-co-glycolic acid) (PLGA) microparticles loaded with local anesthetic, lidocaine was studied. Microfluidic flow-focusing device was used to prepare monodispersed microparticles. A phosphate buffer solution (PBS) was used as porogen. The geometry of microparticles was analyzed, and the drug release profile was determined by UV spectroscopy. Test results showed that porous microparticles are beneficial for sustained release of local anesthetic in long time duration over 40 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xu, B., Ren, L., Tu, W., Wu, Z., Ai, F., et al., “Continuous Wound Infusion of Ropivacaine for the Control of Pain after Thoracolumbar Spinal Surgery: A Randomized Clinical Trial,” European Spine Journal, Vol. 26, No. 3, pp. 825–831, 2015.

    Article  Google Scholar 

  2. Brown, S. L. and Morrison, A. E., “Local Anesthetic Infusion Pump Systems Adverse Events Reported to the Food and Drug Administration,” The Journal of the American Society of Anesthesiologists, Vol. 100, No. 5, pp. 1305–1307, 2004.

    Google Scholar 

  3. Xu, Q., Hashimoto, M., Dang, T. T., Hoare, T., Kohane, D. S., et al., “Preparation of Monodisperse Biodegradable Polymer Microparticles Using a Microfluidic Flow-Focusing Device for Controlled Drug Delivery,” Small, Vol. 5, No. 13, pp. 1575–1581, 2009.

    Article  Google Scholar 

  4. Kim, H.-G., Kim, K.-M., Kim, Y. H., Lee, S. H., and Kim, G. M., “Preparation of Monodisperse ENX-Loaded PLGA Microspheres Using a Microfluidic Flow-Focusing Device,” Journal of Biobased Materials and Bioenergy, Vol. 7, No. 1, pp. 108–114, 2013.

    Article  Google Scholar 

  5. Teh, S.-Y., Lin, R., Hung, L.-H., and Lee, A. P., “Droplet Microfluidics,” Lab on a Chip, Vol. 8, No. 2, pp. 198–220, 2008.

    Article  Google Scholar 

  6. Dang, T.-D., Kim, Y. H., Kim, H. G., and Kim, G. M., “Preparation of Monodisperse PEG Hydrogel Microparticles Using a Microfluidic Flow-Focusing Device,” Journal of Industrial and Engineering Chemistry, Vol. 18, No. 4, pp. 1308–1313, 2012.

    Article  Google Scholar 

  7. Bardin, D., Martz, T. D., Sheeran, P. S., Shih, R., Dayton, P. A., and Lee, A. P., “High-Speed, Clinical-Scale Microfluidic Generation of Stable Phase-Change Droplets for Gas Embolotherapy,” Lab on a Chip, Vol. 11, No. 23, pp. 3990–3998, 2011.

    Article  Google Scholar 

  8. Choi, J. H. and Kim, G. M., “Micro-Patterning on Non-Planar Surface Using Flexible Microstencil,” Int. J. Precis. Eng. Manuf., Vol. 12, No. 1, pp. 165–168, 2011.

    Article  Google Scholar 

  9. Chen, P.-C., Pan, C.-W., Lee, W.-C., and Li, K.-M., “Optimization of Micromilling Microchannels on a Polycarbonate Substrate,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 1, pp. 149–154, 2014.

    Article  Google Scholar 

  10. Cho, Y.-K., Han, T.-H., Ha, S.-J., Lee, J.-W., Kim, J.-S., et al., “Fabrication of Passive Micromixer Using a Digital Micromirror Device-Based Maskless Lithography System,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 7, pp. 1417–1422, 2014.

    Article  Google Scholar 

  11. Choi, J. H., Jin, H. K., Bae, J.-S., Park, C. W., Cheong, I. W., and Kim, G. M., “Fabrication of Detachable Hydrogel Microplates for Separably Patterned Cell Culture,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 5, pp. 945–948, 2014.

    Article  Google Scholar 

  12. Kim, C. M., Park, S. J., and Kim, G. M., “Applications of PLGA Microcarriers Prepared Using Geometrically Passive Breakup on Microfluidic Chip,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 12, pp. 2545–2551, 2015.

    Article  Google Scholar 

  13. Klose, D., Siepmann, F., Willart, J. F., Descamps, M., and Siepmann, J., “Drug Release From PLGA-Based Microparticles: Effects of the “Microparticle: Bulk Fluid” Ratio,” International Journal of Pharmaceutics, Vol. 383, No. 1, pp. 123–131, 2010.

    Article  Google Scholar 

  14. Jiang, C.-P. and Chen, Y.-Y., “Biofabrication of Hybrid Bone Scaffolds Using a Dual-Nozzle Bioplotter and In-Vitro Study of Osteoblast Cell,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 9, pp. 1947–1953, 2014.

    Article  Google Scholar 

  15. Benoit, J.-P., Faisant, N., Venier-Julienne, M.-C., and Menei, P., “Development of Microspheres for Neurological Disorders: From Basics to Clinical Applications,” Journal of Controlled Release, Vol. 65, No. 1, pp. 285–296, 2000.

    Article  Google Scholar 

  16. Siepmann, J., Elkharraz, K., Siepmann, F., and Klose, D., “How Autocatalysis Accelerates Drug Release from PLGA-Based Microparticles: A Quantitative Treatment,” Biomacromolecules, Vol. 6, No. 4, pp. 2312–2319, 2005.

    Article  Google Scholar 

  17. Brunner, A., Mäder, K., and Göpferich, A., “pH and Osmotic Pressure Inside Biodegradable Microspheres during Erosion1,” Pharmaceutical Research, Vol. 16, No. 6, pp. 847–853, 1999.

    Article  Google Scholar 

  18. Klose, D., Siepmann, F., Elkharraz, K., Krenzlin, S., and Siepmann, J., “How Porosity and Size Affect the Drug Release Mechanisms from PLGA-Based Microparticles,” International Journal of Pharmaceutics, Vol. 314, No. 2, pp. 198–206, 2006.

    Article  Google Scholar 

  19. Kang, J. and Schwendeman, S. P., “Comparison of the Effects of Mg(OH)2 and Sucrose on the Stability of Bovine Serum Albumin Encapsulated in Injectable Poly (D, L-Lactide-Co-Glycolide) Implants,” Biomaterials, Vol. 23, No. 1, pp. 239–245, 2002.

    Article  Google Scholar 

  20. Lu, L., Garcia, C. A. and Mikos, A. G., “In Vitro Degradation of Thin Poly (D, L-Lactic-Co-Glycolic Acid) Films,” Journal of Biomedical Materials Research, Vol. 46, No. 2, pp. 236–244, 1999.

    Article  Google Scholar 

  21. Dunne, M., Corrigan, O., and Ramtoola, Z., “Influence of Particle Size and Dissolution Conditions on the Degradation Properties of Polylactide-Co-Glycolide Particles,” Biomaterials, Vol. 21, No. 16, pp. 1659–1668, 2000.

    Article  Google Scholar 

  22. Cheema, T. A., Lee, C.-Y., Kim, G.-M., Hong, J.-G., Kwak, M.-K., and Park, C.-W., “Numerical Investigation on the Effects of the Positional Variation of Porosity in Thin Porous Layers,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 7, pp. 1405–1410, 2014.

    Article  Google Scholar 

  23. Qutachi, O., Vetsch, J. R., Gill, D., Cox, H., Scurr, D. J., et al., “Injectable and Porous PLGA Microspheres that Form Highly Porous Scaffolds at Body Temperature,” Acta Biomaterialia, Vol. 10, No. 12, pp. 5090–5098, 2014.

    Article  Google Scholar 

  24. Ankrum, J. A., Miranda, O. R., Ng, K. S., Sarkar, D., Xu, C., and Karp, J. M., “Engineering Cells with Intracellular Agent-Loaded Microparticles to Control Cell Phenotype,” Nature Protocols, Vol. 9, No. 2, pp. 233–245, 2014.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chul Ho Chang or Gyu Man Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, C.M., Ullah, A., Chang, C.H. et al. Preparation of lidocaine-loaded porous Poly (lactic-co-glycolic acid) microparticles using microfluidic flow focusing and phosphate buffer solution porogen. Int. J. Precis. Eng. Manuf. 18, 599–604 (2017). https://doi.org/10.1007/s12541-017-0071-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-017-0071-y

Keywords

Navigation