Advertisement

Preparation of lidocaine-loaded porous Poly (lactic-co-glycolic acid) microparticles using microfluidic flow focusing and phosphate buffer solution porogen

  • Chul Min Kim
  • Asad Ullah
  • Chul Ho ChangEmail author
  • Gyu Man KimEmail author
Regular Paper

Abstract

Local anesthesia is widely used in the treatment of postoperative pain. Long time duration and constant release of the local anesthetic is important for pain control. In this study, a preparation method of porous Poly (lactic-co-glycolic acid) (PLGA) microparticles loaded with local anesthetic, lidocaine was studied. Microfluidic flow-focusing device was used to prepare monodispersed microparticles. A phosphate buffer solution (PBS) was used as porogen. The geometry of microparticles was analyzed, and the drug release profile was determined by UV spectroscopy. Test results showed that porous microparticles are beneficial for sustained release of local anesthetic in long time duration over 40 days.

Keywords

Porous microparticle PLGA Lidocaine Microfluidic flow-focusing device Local anesthesia Drug delivery 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Xu, B., Ren, L., Tu, W., Wu, Z., Ai, F., et al., “Continuous Wound Infusion of Ropivacaine for the Control of Pain after Thoracolumbar Spinal Surgery: A Randomized Clinical Trial,” European Spine Journal, Vol. 26, No. 3, pp. 825–831, 2015.CrossRefGoogle Scholar
  2. 2.
    Brown, S. L. and Morrison, A. E., “Local Anesthetic Infusion Pump Systems Adverse Events Reported to the Food and Drug Administration,” The Journal of the American Society of Anesthesiologists, Vol. 100, No. 5, pp. 1305–1307, 2004.Google Scholar
  3. 3.
    Xu, Q., Hashimoto, M., Dang, T. T., Hoare, T., Kohane, D. S., et al., “Preparation of Monodisperse Biodegradable Polymer Microparticles Using a Microfluidic Flow-Focusing Device for Controlled Drug Delivery,” Small, Vol. 5, No. 13, pp. 1575–1581, 2009.CrossRefGoogle Scholar
  4. 4.
    Kim, H.-G., Kim, K.-M., Kim, Y. H., Lee, S. H., and Kim, G. M., “Preparation of Monodisperse ENX-Loaded PLGA Microspheres Using a Microfluidic Flow-Focusing Device,” Journal of Biobased Materials and Bioenergy, Vol. 7, No. 1, pp. 108–114, 2013.CrossRefGoogle Scholar
  5. 5.
    Teh, S.-Y., Lin, R., Hung, L.-H., and Lee, A. P., “Droplet Microfluidics,” Lab on a Chip, Vol. 8, No. 2, pp. 198–220, 2008.CrossRefGoogle Scholar
  6. 6.
    Dang, T.-D., Kim, Y. H., Kim, H. G., and Kim, G. M., “Preparation of Monodisperse PEG Hydrogel Microparticles Using a Microfluidic Flow-Focusing Device,” Journal of Industrial and Engineering Chemistry, Vol. 18, No. 4, pp. 1308–1313, 2012.CrossRefGoogle Scholar
  7. 7.
    Bardin, D., Martz, T. D., Sheeran, P. S., Shih, R., Dayton, P. A., and Lee, A. P., “High-Speed, Clinical-Scale Microfluidic Generation of Stable Phase-Change Droplets for Gas Embolotherapy,” Lab on a Chip, Vol. 11, No. 23, pp. 3990–3998, 2011.CrossRefGoogle Scholar
  8. 8.
    Choi, J. H. and Kim, G. M., “Micro-Patterning on Non-Planar Surface Using Flexible Microstencil,” Int. J. Precis. Eng. Manuf., Vol. 12, No. 1, pp. 165–168, 2011.CrossRefGoogle Scholar
  9. 9.
    Chen, P.-C., Pan, C.-W., Lee, W.-C., and Li, K.-M., “Optimization of Micromilling Microchannels on a Polycarbonate Substrate,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 1, pp. 149–154, 2014.CrossRefGoogle Scholar
  10. 10.
    Cho, Y.-K., Han, T.-H., Ha, S.-J., Lee, J.-W., Kim, J.-S., et al., “Fabrication of Passive Micromixer Using a Digital Micromirror Device-Based Maskless Lithography System,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 7, pp. 1417–1422, 2014.CrossRefGoogle Scholar
  11. 11.
    Choi, J. H., Jin, H. K., Bae, J.-S., Park, C. W., Cheong, I. W., and Kim, G. M., “Fabrication of Detachable Hydrogel Microplates for Separably Patterned Cell Culture,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 5, pp. 945–948, 2014.CrossRefGoogle Scholar
  12. 12.
    Kim, C. M., Park, S. J., and Kim, G. M., “Applications of PLGA Microcarriers Prepared Using Geometrically Passive Breakup on Microfluidic Chip,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 12, pp. 2545–2551, 2015.CrossRefGoogle Scholar
  13. 13.
    Klose, D., Siepmann, F., Willart, J. F., Descamps, M., and Siepmann, J., “Drug Release From PLGA-Based Microparticles: Effects of the “Microparticle: Bulk Fluid” Ratio,” International Journal of Pharmaceutics, Vol. 383, No. 1, pp. 123–131, 2010.CrossRefGoogle Scholar
  14. 14.
    Jiang, C.-P. and Chen, Y.-Y., “Biofabrication of Hybrid Bone Scaffolds Using a Dual-Nozzle Bioplotter and In-Vitro Study of Osteoblast Cell,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 9, pp. 1947–1953, 2014.CrossRefGoogle Scholar
  15. 15.
    Benoit, J.-P., Faisant, N., Venier-Julienne, M.-C., and Menei, P., “Development of Microspheres for Neurological Disorders: From Basics to Clinical Applications,” Journal of Controlled Release, Vol. 65, No. 1, pp. 285–296, 2000.CrossRefGoogle Scholar
  16. 16.
    Siepmann, J., Elkharraz, K., Siepmann, F., and Klose, D., “How Autocatalysis Accelerates Drug Release from PLGA-Based Microparticles: A Quantitative Treatment,” Biomacromolecules, Vol. 6, No. 4, pp. 2312–2319, 2005.CrossRefGoogle Scholar
  17. 17.
    Brunner, A., Mäder, K., and Göpferich, A., “pH and Osmotic Pressure Inside Biodegradable Microspheres during Erosion1,” Pharmaceutical Research, Vol. 16, No. 6, pp. 847–853, 1999.CrossRefGoogle Scholar
  18. 18.
    Klose, D., Siepmann, F., Elkharraz, K., Krenzlin, S., and Siepmann, J., “How Porosity and Size Affect the Drug Release Mechanisms from PLGA-Based Microparticles,” International Journal of Pharmaceutics, Vol. 314, No. 2, pp. 198–206, 2006.CrossRefGoogle Scholar
  19. 19.
    Kang, J. and Schwendeman, S. P., “Comparison of the Effects of Mg(OH)2 and Sucrose on the Stability of Bovine Serum Albumin Encapsulated in Injectable Poly (D, L-Lactide-Co-Glycolide) Implants,” Biomaterials, Vol. 23, No. 1, pp. 239–245, 2002.CrossRefGoogle Scholar
  20. 20.
    Lu, L., Garcia, C. A. and Mikos, A. G., “In Vitro Degradation of Thin Poly (D, L-Lactic-Co-Glycolic Acid) Films,” Journal of Biomedical Materials Research, Vol. 46, No. 2, pp. 236–244, 1999.CrossRefGoogle Scholar
  21. 21.
    Dunne, M., Corrigan, O., and Ramtoola, Z., “Influence of Particle Size and Dissolution Conditions on the Degradation Properties of Polylactide-Co-Glycolide Particles,” Biomaterials, Vol. 21, No. 16, pp. 1659–1668, 2000.CrossRefGoogle Scholar
  22. 22.
    Cheema, T. A., Lee, C.-Y., Kim, G.-M., Hong, J.-G., Kwak, M.-K., and Park, C.-W., “Numerical Investigation on the Effects of the Positional Variation of Porosity in Thin Porous Layers,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 7, pp. 1405–1410, 2014.CrossRefGoogle Scholar
  23. 23.
    Qutachi, O., Vetsch, J. R., Gill, D., Cox, H., Scurr, D. J., et al., “Injectable and Porous PLGA Microspheres that Form Highly Porous Scaffolds at Body Temperature,” Acta Biomaterialia, Vol. 10, No. 12, pp. 5090–5098, 2014.CrossRefGoogle Scholar
  24. 24.
    Ankrum, J. A., Miranda, O. R., Ng, K. S., Sarkar, D., Xu, C., and Karp, J. M., “Engineering Cells with Intracellular Agent-Loaded Microparticles to Control Cell Phenotype,” Nature Protocols, Vol. 9, No. 2, pp. 233–245, 2014.CrossRefGoogle Scholar

Copyright information

© Korean Society for Precision Engineering and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.School of Mechanical EngineeringKyungpook National UniversityDaeguSouth Korea
  2. 2.Department of Anesthesiology and Pain MedicineYonsei University College of MedicineSeoulSouth Korea

Personalised recommendations