Skip to main content
Log in

Abstract

Lubrication is essential for proper and reliable operation of mechanical systems as it is vital to reduce friction and wear of moving components to assure high quality performance. Particularly, with continued development of precision devices the need to acquire effective lubrication technology for micro-systems continues to rise. The challenge lies in the fact that conventional lubrication methods cannot be applied to micro-systems due to viscosity effects. Thus, driven by the needs of precision devices, stringent operating conditions and environmental preservation, numerous alternatives to conventional liquid lubricants have been proposed. In this paper, various lubrication methods to replace or improve conventional liquid lubrication and their characteristics are reviewed. Fundamental mechanism and tribological characteristics of minimum quantity lubrication (MQL), vapor phase lubrication (VPL), and self-assembled monolayer are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim, H.-J. and Kim, D.-E., “Nano-Scale Friction: A Review,” Int. J. Precis. Eng. Manuf., Vol. 10, No. 2, pp. 141–151, 2009.

    Article  Google Scholar 

  2. Kim, H. J., Park, I. K., Seo, Y. H., Kim, B. H., and Hong, N. P., “Wire Tension Method for Coefficient of Friction Measurement of Micro Bearing,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 2, pp. 267–273, 2014.

    Article  Google Scholar 

  3. Cheng, D.-J., Yang, W.-S., Park, J.-H., Park, T.-J., Kim, S.-J., et al., “Friction Experiment of Linear Motion Roller Guide THK SRG25,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 3, pp. 545–551, 2014.

    Article  Google Scholar 

  4. Chung, K.-H., “Wear Characteristics of Atomic Force Microscopy Tips: A Reivew,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 10, pp. 2219–2230, 2014.

    Article  Google Scholar 

  5. Choi, Y. and Lee, J., “A Study on the Effects of surface Dimple Geometry on Fretting Fatigue Performance,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 4, pp. 707–713, 2015.

    Article  Google Scholar 

  6. Kurniawan, R. and Ko, T. J., “Friction Reduction on Cylindrical Surfaces by Texturing with a Piezoelectric Actuated Tool Holder,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 5, pp. 861–868, 2015.

    Article  Google Scholar 

  7. Merklein, M., Andreas, K., and Steiner, J., “Influence of Tool Surface on Tribological Conditions in Conventional and Dry Sheet Metal Forming,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 2, No. 2, pp. 131–137, 2015.

    Article  Google Scholar 

  8. Bhushan, B., “Principles and Applications of Tribology,” John Wiley & Sons, pp. 1–7, 1999.

    Google Scholar 

  9. Bruce, R. W., “Handbook of Lubrication and Tribology, Volume II: Theory and Design,” CRC Press, 2nd Ed., 2012.

    Google Scholar 

  10. Chang, H., Kao, M.-J., Luo, J.-D., and Lan, C.-W., “Synthesis and Effect of Nanogrease on Tribological Properties,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 7, pp. 1311–1316, 2015.

    Article  Google Scholar 

  11. Chang, H., Lan, C.-W., Chen, C.-H., Kao, M.-J., and Guo, J.-B., “Anti-Wear and Friction Properties of Nanoparticles as Additives in the Lithium Grease,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 10, pp. 2059–2063, 2014.

    Article  Google Scholar 

  12. Zareh-Desari, B., Abaszadeh-Yakhforvazani, M., and Khalilpourazary, S., “The Effect of Nanoparticle Additives on Lubrication Performance in Deep Drawing Process: Evaluation of Forming Load, Friction Coefficient and Surface Quality,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 5, pp. 929–936, 2015.

    Article  Google Scholar 

  13. Hong, Y.-S., Lee, S.-R., Kim, J.-H., and Lee, S.-Y., “Application of a DLC-Coating for Improving Hydrostatic Piston Shoe Bearing Performance under Mixed Friction Conditions,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 2, pp. 335–341, 2015.

    Article  Google Scholar 

  14. Chang, S., Pyun, Y.-s., and Amanov, A., “Wear and Chattering Characteristics of Rail Materials by Ultrasonic Nanocrystal Surface Modification,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 11, pp. 2403–2410, 2015.

    Article  Google Scholar 

  15. Truong, D. Q., Truong, B. N. M., Ahn, K. K., and Lee, J. S., “Development of an Electronically Controlled Variable Displacement Vane Pump for Engine Lubrication,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 9, pp. 1925–1934, 2015.

    Article  Google Scholar 

  16. Penkov, O., Kim, H.-J., Kim, H.-J., and Kim, D.-E., “Tribology of Graphene: A Review,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 3, pp. 577–585, 2014.

    Article  Google Scholar 

  17. Kim, D.-E., Kim, C.-L., and Kim, H.-J., “A Novel Approach to Wear Reduction of Micro-Components by Synthesis of Carbon Nanotube-Silver Composite Coating,” CIRP Annals-Manufacturing Technology, Vol. 60, No. 1, pp. 599–602, 2011.

    Article  Google Scholar 

  18. Kim, J.-K., Yoo, S.-S., Nemati, N., and Kim, D.-E., “Frictional Characteristics of Sub-100-Borosilicate Glass Balls for Actuator Applications,” Journal of Microelectromechanical Systems, Vol. 24, No. 6, pp. 2161–2169, 2015.

    Article  Google Scholar 

  19. Kim, H.-J., Yoo, S.-S., and Kim, D.-E., “Nano-Scale Wear: A Review,” Int. J. Precis. Eng. Manuf., Vol. 13, No. 9, pp. 1709–1718, 2012.

    Article  MathSciNet  Google Scholar 

  20. Li, H.-Y., He, H.-B., Han, W.-Q., Yang, J., Gu, T., et al., “A Study on Cutting and Tribology Performances of Tin and Tialn Coated Tools,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 4, pp. 781–786, 2015.

    Article  Google Scholar 

  21. Park, N.-R. and Ahn, D.-G., “Wear Characteristics of Stellite6 and NOREM02 Hardfaced SKD61 Hot Working Tool Steel at the Elevated Temperature,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 12, pp. 2549–2558, 2014.

    Article  Google Scholar 

  22. Choi, H.-S., Kim, S.-G., Seo, P.-K., Kim, B.-M., Cha, B.-C., and Ko, D.-C., “Experimental Investigation on Galling Performance of Tool Steel in Stamping of UHSS Sheets,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 6, pp. 1101–1107, 2014.

    Article  Google Scholar 

  23. Campatelli, G., Scippa, A., Lorenzini, L., and Sato, R., “Optimal Workpiece Orientation to Reduce the Energy Consumption of a Milling Process,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 2, No. 1, pp. 5–13, 2015.

    Article  Google Scholar 

  24. Zhi, S., Li, J., and Zarembski, A. M., “Grinding Motor Energy Saving Method based on Material Removal Model in Rail Grinding Processes,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 2, No. 1, pp. 21–30, 2015.

    Article  Google Scholar 

  25. Ahn, S.-H., “An Evaluation of Green Manufacturing Technologies based on Research Databases,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 1, No. 1, pp. 5–9, 2014.

    Article  Google Scholar 

  26. Dornfeld, D. A., “Moving Towards Green and Sustainable Manufacturing,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 1, No. 1, pp. 63–66, 2014.

    Article  Google Scholar 

  27. Schmidt, C., Li, W., Thiede, S., Kara, S., and Herrmann, C., “A Methodology for Customized Prediction of Energy Consumption in Manufacturing Industries,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 2, No. 2, pp. 163–172, 2015.

    Article  Google Scholar 

  28. Gnanadurai, R. R. and Varadarajan, A., “Investigation on the Effect of an Auxiliary Pulsing Jet of Water at the Top Side of Chip during Hard Turning of AISI 4340 Steel with Minimal Fluid Application,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 7, pp. 1435–1441, 2014.

    Article  Google Scholar 

  29. Lee, W., Nam, E., Lee, C.-Y., Jang, K.-I., and Min, B.-K., “Electrochemical Oxidation Assisted Micromachining of Glassy Carbon Substrate,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 3, pp. 419–422, 2015.

    Article  Google Scholar 

  30. Klocke, F. and Eisenblätter, G., “Dry Cutting,” CIRP Annals -Manufacturing Technology, Vol. 46, No. 2, pp. 519–526, 1997.

    Article  Google Scholar 

  31. Park, K.-H., Yang, G.-D., Lee, M.-G., Jeong, H., Lee, S.-W., and Lee, D. Y., “Eco-Friendly Face Milling of Titanium Alloy,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 6, pp. 1159–1164, 2014.

    Article  Google Scholar 

  32. Yuh, M., Jang, S., Kim, H., Lee, H., and Jeong, H., “Development of Green CMP by Slurry Reduction through Controlling Platen Coolant Temperature,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 2, No. 4, pp. 339–344, 2015.

    Article  Google Scholar 

  33. Lee, W., Lee, C.-Y., and Min, B.-K., “Simulation-based Energy Usage Profiling of Machine Tool at the Component Level,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 1, No. 3, pp. 183–189, 2014.

    Article  Google Scholar 

  34. Shokrani, A., Dhokia, V., and Newman, S. T., “Environmentally Conscious Machining of Difficult-to-Machine Materials with Regard to Cutting Fluids,” International Journal of Machine Tools and Manufacture, Vol. 57, pp. 83–101, 2012.

    Article  Google Scholar 

  35. Zhang, S., Li, J., and Wang, Y., “Tool Life and Cutting Forces in End Milling Inconel 718 under Dry and Minimum Quantity Cooling Lubrication Cutting Conditions,” Journal of Cleaner Production, Vol. 32, pp. 81–87, 2012.

    Article  Google Scholar 

  36. Heo, J., Min, H., and Lee, M., “Laser Micromachining of Permalloy for Fine Metal Mask,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 2, No. 3, pp. 225–230, 2015.

    Article  Google Scholar 

  37. Muhammad, I., Ullah, S. M. S., and Ko, T. J., “Selection of Optimum Process Parameters of Biomachining for Maximum Metal Removal Rate,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 2, No. 4, pp. 307–313, 2015.

    Article  Google Scholar 

  38. Weinert, K., Inasaki, I., Sutherland, J., and Wakabayashi, T., “Dry Machining and Minimum Quantity Lubrication,” CIRP Annals-Manufacturing Technology, Vol. 53, No. 2, pp. 511–537, 2004.

    Article  Google Scholar 

  39. Rossmoore, H. W., “Microbiology of Metalworking Fluids: Deterioration, Disease and Disposal,” Lubrication engineering, Vol. 51, No. 2, pp. 112–118, 1995.

    Google Scholar 

  40. Zhang, D., Li, C., Jia, D., Zhang, Y., and Zhang, X., “Specific Grinding Energy and Surface Roughness of Nanoparticle Jet Minimum Quantity Lubrication in Grinding,” Chinese Journal of Aeronautics, Vol. 28, No. 2, pp. 570–581, 2015.

    Article  Google Scholar 

  41. Machado, A. and Wallbank, J., “The Effect of Extremely Low Lubricant Volumes in Machining,” Wear, Vol. 210, No. 1, pp. 76–82, 1997.

    Article  Google Scholar 

  42. Aoyama, T., “Development of a Mixture Supply System for Machining with Minimal Quantity Lubrication,” CIRP Annals-Manufacturing Technology, Vol. 51, No. 1, pp. 289–292, 2002.

    Article  Google Scholar 

  43. Wakabayashi, T. and Ogura, S., “Evaluation of Cutting Fluids by Consumption Energy in Tapping Test,” Lubrication Engineering, Vol. 46, No. 11, pp. 715–720, 1990.

    Google Scholar 

  44. Byrne, G. and Scholta, E., “Environmentally Clean Machining Processes-A Strategic Approach,” CIRP Annals-Manufacturing Technology, Vol. 42, No. 1, pp. 471–474, 1993.

    Article  Google Scholar 

  45. Pusavec, F., Kramar, D., Krajnik, P., and Kopac, J., “Transitioning to Sustainable Production-Part II: Evaluation of Sustainable Machining Technologies,” Journal of Cleaner Production, Vol. 18, No. 12, pp. 1211–1221, 2010.

    Article  Google Scholar 

  46. Shen, B., Shih, A. J., and Tung, S. C., “Application of Nanofluids in Minimum Quantity Lubrication Grinding,” Tribology Transactions, Vol. 51, No. 6, pp. 730–737, 2008.

    Article  Google Scholar 

  47. Dhar, N. R., Kamruzzaman, M., and Ahmed, M., “Effect of Minimum Quantity Lubrication (MQL) on Tool Wear and Surface Roughness in Turning AISI-4340 Steel,” Journal of Materials Processing Technology, Vol. 172, No. 2, pp. 299–304, 2006.

    Article  Google Scholar 

  48. Dhar, N. R., Ahmed, M. T., and Islam, S., “An Experimental Investigation on Effect of Minimum Quantity Lubrication in Machining AISI 1040 Steel,” International Journal of Machine Tools and Manufacture, Vol. 47, No. 5, pp. 748–753, 2007.

    Article  Google Scholar 

  49. Ji, X., Li, B., Zhang, X., and Liang, S. Y., “The Effects of Minimum Quantity Lubrication (MQL) on Machining Force, Temperature, and Residual Stress,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 11, pp. 2443–2451, 2014.

    Article  Google Scholar 

  50. Dureja, J., Singh, R., Singh, T., Singh, P., Dogra, M., and Bhatti, M. S., “Performance Evaluation of Coated Carbide Tool in Machining of Stainless Steel (AISI 202) under Minimum Quantity Lubrication (MQL),” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 2, No. 2, pp. 123–129, 2015.

    Article  Google Scholar 

  51. Rubio, E. M., Villeta, M., Carou, D., and Saá, A., “Comparative Analysis of Sustainable Cooling Systems in Intermittent Turning of Magnesium Pieces,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 5, pp. 929–940, 2014.

    Article  Google Scholar 

  52. Duchosal, A., Serra, R., Leroy, R., and Hamdi, H., “Numerical Optimization of the Minimum Quantity Lubrication Parameters by Inner Canalizations and Cutting Conditions for Milling Finishing Process with Taguchi Method,” Journal of Cleaner Production, Vol. 108, Part A, pp. 65–71, 2015.

    Article  Google Scholar 

  53. Rabiei, F., Rahimi, A., Hadad, M., and Ashrafijou, M., “Performance Improvement of Minimum Quantity Lubrication (MQL) Technique in Surface Grinding by Modeling and Optimization,” Journal of Cleaner Production, Vol. 86, pp. 447–460, 2015.

    Article  Google Scholar 

  54. Raza, S. W., Pervaiz, S., and Deiab, I., “Tool Wear Patterns when Turning of Titanium Alloy using Sustainable Lubrication Strategies,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 9, pp. 1979–1985, 2014.

    Article  Google Scholar 

  55. Lee, P.-H., Lee, S. W., Lim, S.-H., Lee, S.-H., Ko, H. S., and Shin, S.-W., “A Study on Thermal Characteristics of Micro-Scale Grinding Process using Nanofluid Minimum Quantity Lubrication (MQL),” Int. J. Precis. Eng. Manuf., Vol. 16, No. 9, pp. 1899–1909, 2015.

    Article  Google Scholar 

  56. Wang, C.-D., Chen, M., An, Q.-L., Wang, M., and Zhu, Y.-H., “Tool Wear Performance in Face Milling Inconel 182 using Minimum Quantity Lubrication with Different Nozzle Positions,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 3, pp. 557–565, 2014.

    Article  Google Scholar 

  57. Wang, Y., Li, C., Zhang, Y., Li, B., Yang, M., et al., “Experimental Evaluation of the Lubrication Properties of the Wheel/Workpiece Interface in MQL Grinding with Different Nanofluids,” Tribology International, Vol. 99, pp. 198–210, 2016.

    Article  Google Scholar 

  58. Park, K.-H., Yang, G.-D., and Lee, D. Y., “Tool Wear Analysis on Coated and Uncoated Carbide Tools in Inconel Machining,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 7, pp. 1639–1645, 2015.

    Article  Google Scholar 

  59. Wagner, M. J., Forster, N. H., Van Treuren, K. W., and Gerardi, D. T., “Vapor Phase Lubrication for Expendable Gas Turbine Engines,” Journal of Engineering for Gas Turbines and Power, Vol. 122, No. 2, pp. 185–190, 2000.

    Article  Google Scholar 

  60. Asay, D. B., Dugger, M. T., and Kim, S. H., “In-Situ Vapor-Phase Lubrication of MEMS,” Tribology Letters, Vol. 29, No. 1, pp. 67–74, 2008.

    Article  Google Scholar 

  61. Gellman, A. J., “Vapor Lubricant Transport in Mems Devices,” Tribology Letters, Vol. 17, No. 3, pp. 455–461, 2004.

    Article  Google Scholar 

  62. Fein, R. S. and Kreuz, K. L., “Chemistry of Boundary Lubrication of Steel by Hydrocarbons,” ASLE Transactions, Vol. 8, No. 1, pp. 29–38, 1965.

    Article  Google Scholar 

  63. Kim, S. H., “Vapor Phase Lubrication for Micro-Machines,” Encyclopedia of Tribology, pp. 3960–3966, 2013.

    Chapter  Google Scholar 

  64. Yoo, S.-S. and Kim, D.-E., “Vapor Phase Lubrication using High Molecular Weight Lubricant for Friction Reduction of Metals,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 5, pp. 867–873, 2014.

    Article  MathSciNet  Google Scholar 

  65. Kim, S. H., Asay, D. B., and Dugger, M. T., “Nanotribology and MEMS,” Nano Today, Vol. 2, No. 5, pp. 22–29, 2007.

    Article  Google Scholar 

  66. Asay, D. B., Dugger, M. T., Ohlhausen, J. A., and Kim, S. H., “Macro-to Nanoscale Wear Prevention via Molecular Adsorption,” Langmuir, Vol. 24, No. 1, pp. 155–159, 2008.

    Article  Google Scholar 

  67. Barnette, A. L., Asay, D. B., Kim, D., Guyer, B. D., Lim, H., et al., “Experimental and Density Functional Theory Study of the Tribochemical Wear Behavior of SiO2 in Humid and Alcohol Vapor Environments,” Langmuir, Vol. 25, No. 22, pp. 13052–13061, 2009.

    Article  Google Scholar 

  68. Brunauer, S., Deming, L. S., Deming, W. E., and Teller, E., “On a Theory of the Van der Waals Adsorption of Gases,” Journal of the American Chemical Society, Vol. 62, No. 7, pp. 1723–1732, 1940.

    Article  Google Scholar 

  69. Barnette, A. L., Asay, D. B., Janik, M. J., and Kim, S. H., “Adsorption Isotherm and Orientation of Alcohols on Hydrophilic SiO2 under Ambient Conditions,” The Journal of Physical Chemistry C, Vol. 113, No. 24, pp. 10632–10641, 2009.

    Article  Google Scholar 

  70. Ashurst, W. R., Carraro, C., and Maboudian, R., “Vapor Phase Anti-Stiction Coatings for MEMS,” IEEE Transactions on Device and Materials Reliability, Vol. 3, No. 4, pp. 173–178, 2003.

    Article  Google Scholar 

  71. Boehm, M., Martin, J. M., Grossiord, C., and Le Mogne, T., “Modelling Tribochemical Reactions of Additives by Gas-Phase Lubrication,” Tribology Letters, Vol. 11, No. 2, pp. 83–90, 2001.

    Article  Google Scholar 

  72. Sawyer, W. G. and Blanchet, T. A., “Vapor-Phase Lubrication in Combined Rolling and Sliding Contacts: Modeling and Experimentation,” Journal of Tribology, Vol. 123, No. 3, pp. 572–581, 2001.

    Article  Google Scholar 

  73. Strawhecker, K., Asay, D. B., McKinney, J., and Kim, S. H., “Reduction of Adhesion and Friction of Silicon Oxide Surface in the Presence of N-Propanol Vapor in the Gas Phase,” Tribology Letters, Vol. 19, No. 1, pp. 17–21, 2005.

    Article  Google Scholar 

  74. Martin, J.-M., Bouchet, M.-I. D. B., Matta, C., Zhang, Q., Goddard III, W. A., Okuda, S., and Sagawa, T., “Gas-Phase Lubrication of Ta-C by Glycerol and Hydrogen Peroxide. Experimental and Computer Modeling,” The Journal of Physical Chemistry C, Vol. 114, No. 11, pp. 5003–5011, 2010.

    Article  Google Scholar 

  75. Marino, M. J., Hsiao, E., Bradley, L. C., Eryilmaz, O. L., Erdemir, A., and Kim, S. H., “Is Ultra-Low Friction Needed to Prevent Wear of Diamond-Like Carbon (DLC)? An Alcohol Vapor Lubrication Study for Stainless Steel/DLC Interface,” Tribology Letters, Vol. 42, No. 3, pp. 285–291, 2011.

    Article  Google Scholar 

  76. Satyanarayana, N. and Sinha, S.K., “Tribology of PFPE Overcoated Self-Assembled Monolayers Deposited on Si Surface,” Journal of Physics D: Applied Physics, Vol. 38, No. 18, pp. 3512–3522, 2005.

    Article  Google Scholar 

  77. Tambe, N. S. and Bhushan, B., “Nanotribological Characterization of Self-Assembled Monolayers Deposited on Silicon and Aluminium Substrates,” Nanotechnology, Vol. 16, No. 9, pp. 1549–1558, 2005.

    Article  Google Scholar 

  78. Guo, L.-Y. and Zhao, Y.-P., “Effect of Chain Length of Self-Assembled Monolayers on Adhesion Force Measurement by AFM,” Journal of Adhesion Science and Technology, Vol. 20, No. 12, pp. 1281–1293, 2006.

    Article  Google Scholar 

  79. Ahn, H.-S., Cuong, P. D., Park, S., Kim, Y.-W., and Lim, J.-C., “Effect of Molecular Structure of Self-Assembled Monolayers on their Tribological Behaviors in Nano-and Microscales,” Wear, Vol. 255, No. 7, pp. 819–825, 2003.

    Article  Google Scholar 

  80. Xiao, X., Hu, J., Charych, D. H., and Salmeron, M., “Chain Length Dependence of the Frictional Properties of Alkylsilane Molecules Self-Assembled on Mica Studied by Atomic Force Microscopy,” Langmuir, Vol. 12, No. 2, pp. 235–237, 1996.

    Article  Google Scholar 

  81. Sahoo, R. R. and Biswas, S., “Frictional Response of Fatty Acids on Steel,” Journal of Colloid and Interface Science, Vol. 333, No. 2, pp. 707–718, 2009.

    Article  Google Scholar 

  82. Ren, S.-L., Yang, S.-R., Wang, J.-Q., Liu, W.-M., and Zhao, Y.-P., “Preparation and Tribological Studies of Stearic Acid Self-Assembled Monolayers on Polymer-Coated Silicon Surface,” Chemistry of Materials, Vol. 16, No. 3, pp. 428–434, 2004.

    Article  Google Scholar 

  83. Rühe, J., Novotny, V. J., Kanazawa, K. K., Clarke, T., and Street, G. B., “Structure and Tribological Properties of Ultrathin Alkylsilane Films Chemisorbed to Solid Surfaces,” Langmuir, Vol. 9, No. 9, pp. 2383–2388, 1993.

    Article  Google Scholar 

  84. Srinivasan, U., Houston, M. R., Howe, R. T., and Maboudian, R., “Alkyltrichlorosilane-based Self-Assembled Monolayer Films for Stiction Reduction in Silicon Micromachines,” Journal of Microelectromechanical Systems, Vol. 7, No. 2, pp. 252–260, 1998.

    Article  Google Scholar 

  85. Tian, F., Xiao, X., Loy, M. M. T., Wang, C., and Bai, C., “Humidity and Temperature Effect on Frictional Properties of Mica and Alkylsilane Monolayer Self-Assembled on Mica,” Langmuir, Vol. 15, No. 1, pp. 244–249, 1999.

    Article  Google Scholar 

  86. Choi, J., Ishida, T., Kato, T., and Fujisawa, S., “Self-Assembled Monolayer on Diamond-Like Carbon Surface: Formation and Friction Measurements,” Tribology International, Vol. 36, No. 4, pp. 285–290, 2003.

    Article  Google Scholar 

  87. Bhushan, B., Kasai, T., Kulik, G., Barbieri, L., and Hoffmann, P., “AFM Study of Perfluoroalkylsilane and Alkylsilane Self-Assembled Monolayers for Anti-Stiction in MEMS/NEMS,” Ultramicroscopy, Vol. 105, No. 1, pp. 176–188, 2005.

    Article  Google Scholar 

  88. Sung, I.-H., Yang, J.-C., Kim, D.-E., and Shin, B.-S., “Micro/Nano-Tribological Characteristics of Self-Assembled Monolayer and Its Application in Nano-Structure Fabrication,” Wear, Vol. 255, No. 7, pp. 808–818, 2003.

    Article  Google Scholar 

  89. Lio, A., Charych, D., and Salmeron, M., “Comparative Atomic Force Microscopy Study of the Chain Length Dependence of Frictional Properties of Alkanethiols on Gold and Alkylsilanes on Mica,” The Journal of Physical Chemistry B, Vol. 101, No. 19, pp. 3800–3805, 1997.

    Article  Google Scholar 

  90. Khatri, O. P., Math, S., Bain, C. D., and Biswas, S. K., “Frictional Response of a Silane Monolayer to Sliding in a Humid Environment,” The Journal of Physical Chemistry C, Vol. 111, No. 44, pp. 16339–16344, 2007.

    Article  Google Scholar 

  91. Kim, H. I., Koini, T., Lee, T. R., and Perry, S. S., “Molecular Contributions to the Frictional Properties of Fluorinated Self-Assembled Monolayers,” Tribology Letters, Vol. 4, No. 2, pp. 137–140, 1998.

    Article  Google Scholar 

  92. Bhushan, B. and Liu, H., “Nanotribological Properties and Mechanisms of Alkylthiol and Biphenyl Thiol Self-Assembled Monolayers Studied by AFM,” Physical Review B, Vol. 63, No. 24, Paper No. 245412, 2001.

    Article  Google Scholar 

  93. Liu, H., Bhushan, B., Eck, W., and Stadler, V., “Investigation of the Adhesion, Friction, and Wear Properties of Biphenyl Thiol Self-Assembled Monolayers by Atomic Force Microscopy,” Journal of Vacuum Science & Technology A, Vol. 19, No. 4, pp. 1234–1240, 2001.

    Article  Google Scholar 

  94. Qian, L., Tian, F., and Xiao, X., “Tribological Properties of Self-Assembled Monolayers and their Substrates under Various Humid Environments,” Tribology Letters, Vol. 15, No. 3, pp. 169–176, 2003.

    Article  Google Scholar 

  95. Mo, Y., Zhu, M., and Bai, M., “Preparation and Nano/ Microtribological Properties of Perfluorododecanoic Acid (PFDA)-3-Aminopropyltriethoxysilane (APS) Self-Assembled Dual-Layer Film Deposited on Silicon,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 322, No. 1, pp. 170–176, 2008.

    Article  Google Scholar 

  96. Zhao, J., Chen, M., Liu, J., and Yan, F., “Preparation and Tribological Studies of Self-Assembled Triple-Layer Films,” Thin Solid Films, Vol. 517, No. 13, pp. 3752–3759, 2009.

    Article  Google Scholar 

  97. Zhao, J., Chen, M., and Yan, F., “Preparation and Micro-Mechanical Studies of Polysiloxane-Containing Dual-Layer Film on Au Surface,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 346, No. 1, pp. 75–82, 2009.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dae-Eun Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, HJ., Seo, KJ., Kang, K.H. et al. Nano-lubrication: A review. Int. J. Precis. Eng. Manuf. 17, 829–841 (2016). https://doi.org/10.1007/s12541-016-0102-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-016-0102-0

Keywords

Navigation