Skip to main content
Log in

Modulation of cavities and interconnecting pores in manufacturing water blown flexible poly (urethane urea) foams

  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

Flexible poly (urethane urea) (PUU) foam based on the polyol and isocyanate with various additional components is synthesized by one shot polymerization. FTIR analysis shows that both urethane and urea formations are closely related to the catalysts, water, and NCO index. Increment of the catalyst concentration increases the initial volume velocity of the flexible PUU foam but decreases the bulk density by the increased number of cavities and pores. Water has strong effects on the initial volume velocity and bulk density, whereas increment of the NCO index has a little influence on the physical properties. The average cavity and pore sizes increase with increasing the equivalents ratio of water to polyol, but there is a limiting equivalents ratio in the PUU foam systems not to form coalesced or collapsed microcellular structure. The foams are also characterized using a scanning electron microscope and a Fourier transformed infrared spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yadav, S. K., Mahapatra, S. S., and Cho, J. W., “Synthesis of Mechanically Robust Antimicrobial Nanocomposites by Click Coupling of Hyperbranched Polyurethane and Carbon Nanotubes,” Polymer, Vol. 53, No. 10, pp. 2023–2031, 2012.

    Article  Google Scholar 

  2. Ionescu, M., “Chemistry and Technology of Polyols for Polyurethanes,” Smithers Rapra Press, p. 5, 2005.

    Google Scholar 

  3. Delebecq, E., Pascault, J.-P., Boutevin, B., and Ganachaud, F. O., “On the Versatility of Urethane/Urea Bonds: Reversibility, Blocked Isocyanate, and Non-Isocyanate Polyurethane,” Chemical Reviews, Vol. 113, No. 1, pp. 80–118, 2012.

    Article  Google Scholar 

  4. Ashida, K., “Polyurethane and Related Foams: Chemistry and Technology,” CRC Press, pp. 11–12, 2006.

    Google Scholar 

  5. Farrissey Jr, W. J., Ricciardi, R., and Sayigh, A. A., “Reactions of 1, 3-Diphenyl-4-(Phenylimino)-2-Uretidinone,” The Journal of Organic Chemistry, Vol. 33, No. 5, pp. 1913–1917, 1968.

    Article  Google Scholar 

  6. Arnold, R. G., Nelson, J. A., and Verbanc, J. J., “Recent Advances in Isocyanate Chemistry,” Chemical Reviews, Vol. 57, No. 1, pp. 47–76, 1957.

    Article  Google Scholar 

  7. Walter Dias Vilar, D., “Chemistry and Technology of Polyurethanes,” Rio deJaneiro Vilar Consultoria Tecnica Ltd., 3rd Ed., p. 360, 2002.

    Google Scholar 

  8. Daniel-da-Silva, A. L., Bordado, J. C. M., and Martín-Martínez, J. M., “Moisture Curing Kinetics of Isocyanate Ended Urethane Quasi- Prepolymers Monitored by IR Spectroscopy and DSC,” Journal of Applied Polymer Science, Vol. 107, No. 2, pp. 700–709, 2008.

    Article  Google Scholar 

  9. Heintz, A. M., Duffy, D. J., Hsu, S. L., Suen, W., Chu, W., and Paul, C. W., “Effects of Reaction Temperature on the Formation of Polyurethane Prepolymer Structures,” Macromolecules, Vol. 36, No. 8, pp. 2695–2704, 2003.

    Article  Google Scholar 

  10. Hepburn, C., “Polyurethane Eastomers,” Applied Science Publishers, 1st Ed., p. 63, 1982.

    Google Scholar 

  11. van der Schuur, M., van der Heide, E., Feijen, J., and Gaymans, R. J., “Elastic Behavior of Flexible Polyether (Urethane-Urea) Foam Materials,” Polymer, Vol. 45, No. 8, pp. 2721–2727, 2004.

    Article  Google Scholar 

  12. Li, W., Ryan, A. J., and Meier, I. K., “Effect of Chain Extenders on the Morphology Development in Flexible Polyurethane Foam,” Macromolecules, Vol. 35, No. 16, pp. 6306–6312, 2002.

    Article  Google Scholar 

  13. Elwell, M. J., Ryan, A. J., Gruenbauer, H. J., and Van Lieshout, H. C., “In-Situ Studies of Structure Development during the Reactive Processing of Model Flexible Polyurethane Foam Systems using FTIR Spectroscopy, Synchrotron Saxs,” and Rheology, Macromolecules, Vol. 29, No. 8, pp. 2960–2968, 1996.

    Article  Google Scholar 

  14. Ryan, A. J., Macosko, C. W., and Bras, W., “Order-Disorder Transition in a Block Copolyurethane,” Macromolecules, Vol. 25, No. 23, pp. 6277–6283, 1992.

    Article  Google Scholar 

  15. Yasunaga, K., Neff, R., Zhang, X., and Macosko, C., “Study of Cell Opening in Flexible Polyurethane Foam,” Journal of Cellular Plastics, Vol. 32, No. 5, pp. 427–448, 1996.

    Google Scholar 

  16. Neff, R. A. and Macosko, C. W., “Simultaneous Measurement of Viscoelastic Changes and Cell Opening during Processing of Flexible Polyurethane Foam,” Rheologica Acta, Vol. 35, No. 6, pp. 656–666, 1996.

    Article  Google Scholar 

  17. Mora, E., Artavia, L., and Macosko, C., “Modulus Development during Reactive Urethane Foaming,” Journal of Rheology, Vol. 35, No. 5, pp. 921–940, 1991.

    Article  Google Scholar 

  18. McClusky, J., Priester, R., O'Neill, R., Willkomm, W., Heaney, M., and Capel, M., “The Use of FT-IR and Dynamic Saxs to Provide an Improved Understanding of the Matrix Formation and Viscosity Build of Flexible Polyurethane Foams,” Journal of Cellular Plastics, Vol. 30, No. 4, pp. 338–360, 1994.

    Article  Google Scholar 

  19. McClusky, J., O'Neill, R., Priester, R., and Ramsey, W., “Vibrating Rod Viscometer: A Valuable Probe into Polyurethane Chemistry,” Journal of Cellular Plastics, Vol. 30, No. 3, pp. 224–241, 1994.

    Article  Google Scholar 

  20. Lyu, M.-Y. and Choi, T. G., “Research Trends in Polymer Materials for Use in Lightweight Vehicles,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 1, pp. 213–220, 2015.

    Article  Google Scholar 

  21. Dworakowska, S., Bogda, D., Zaccheria, F., and Ravasio, N., “The Role of Catalysis in the Synthesis of Polyurethane Foams based on Renewable Raw Materials,” Catalysis Today, Vol. 223, pp. 148–156, 2014.

    Article  Google Scholar 

  22. Lan, Z., Daga, R., Whitehouse, R., McCarthy, S., and Schmidt, D., “Structure-Properties Relations in Flexible Polyurethane Foams Containing a Novel Bio-based Crosslinker,” Polymer, Vol. 55, No. 11, pp. 2635–2644, 2014.

    Article  Google Scholar 

  23. Bernal, M., LopezManchado, M. A., and Verdejo, R., “In Situ Foaming Evolution of Flexible Polyurethane Foam Nanocomposites,” Macromolecular Chemistry and Physics, Vol. 212, No. 9, pp. 971–979, 2011.

    Article  Google Scholar 

  24. Elwell, M. J., Ryan, A. J., Grünbauer, H. J., and Van Lieshout, H. C., “An FT-IR Study of Reaction Kinetics and Structure Development in Model Flexible Polyurethane Foam Systems,” Polymer, Vol. 37, No. 8, pp. 1353–1361, 1996.

    Article  Google Scholar 

  25. Heintz, A. M., Duffy, D. J., Nelson, C. M., Hua, Y., Hsu, S. L., et al., “A Spectroscopic Analysis of the Phase Evolution in Polyurethane Foams,” Macromolecules, Vol. 38, No. 22, pp. 9192–9199, 2005.

    Article  Google Scholar 

  26. Marcos-Fernandez, A., Lozano, A. E., Gonzalez, L., and Rodriguez, A., “Hydrogen Bonding in Copoly (Ether-Urea) S and Its Relationship with the Physical Properties,” Macromolecules, Vol. 30, No. 12, pp. 3584–3592, 1997.

    Article  Google Scholar 

  27. de Haseth, J. A., Andrews, J. E., McClusky, J. V., Priester, R. D., Harthcock, M. A., and Davis, B. L., “Characterization of Polyurethane Foams by Mid-Infrared Fiber/FT-IR Spectrometry,” Applied Spectroscopy, Vol. 47, No. 2, pp. 173–179, 1993.

    Article  Google Scholar 

  28. Li, S., Vatanparast, R., Vuorimaa, E., and Lemmetyinen, H., “Curing Kinetics and Glass-Transition Temperature of Hexamethylene Diisocyanate-based Polyurethane,” Journal of Polymer Science Part B: Polymer Physics, Vol. 38, No. 17, pp. 2213–2220, 2000.

    Article  Google Scholar 

  29. Lim, H., Kim, S. H., and Kim, B. K., “Effects of Silicon Surfactant in Rigid Polyurethane Foams,” Express Polymer Letters, Vol. 2, No. 3, pp. 194–200, 2008.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung Hyeun Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gwon, J.G., Sung, G. & Kim, J.H. Modulation of cavities and interconnecting pores in manufacturing water blown flexible poly (urethane urea) foams. Int. J. Precis. Eng. Manuf. 16, 2299–2307 (2015). https://doi.org/10.1007/s12541-015-0295-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-015-0295-7

Keywords

Navigation