Skip to main content
Log in

Development of cell morphologies in manufacturing flexible polyurethane urea foams as sound absorption materials

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

The effect of water content and a type of gelling catalysts [Triethylenediamine (DABCO) and dibutyltin dilaurate (DBTDL)] on chemical and physical structures of the flexible polyurethane foams (the flexible PUFs) is explored by a fourier transform infrared spectroscopy with attenuated total reflectance and a scanning electron microscope techniques. The amount of water usage plays a crucial role in controlling the sizes of cavities and pores of the PUFs. From the two gelling catalysts, the DBTDL reduces the rate of urea formation and NCO (isocyanate functional group) conversion due to the reduced molecular activity from the sterically hindered catalyst structure, comparing with the DABCO catalyst case. Strong gelling effect of the DBTDL can prevent the coalescence of the cavities and thus produce high number of well dispersed pores, but poor cavity and pore morphologies are observed in case of the fast reactions between isocyanate and water with the DABCO catalyst. The size uncertainties of cavity and pores with DBTDL catalyst are relatively smaller than with DABCO catalyst. In the sound absorption characteristics, uniformly distributed cavities and pores show better efficiency than the non-uniform cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S.K. Yadav, S.S. Mahapatra, J.W. Cho, Polymer 53, 2023–2031 (2012)

    Article  CAS  Google Scholar 

  2. M. Lonescu, Chemistry and Technology of Polyols for Polyurethanes, 1st edn. (Smithers Rapra RapraTechnology Ltd., Shrewsbury, 2005), p. 5

    Google Scholar 

  3. S. Gunashekar, K.M. Pillai, B.C. Church, N.H. Abu-Zahra, J. Porous Mater. 22, 749–759 (2015)

    Article  CAS  Google Scholar 

  4. W. Li, S. Liu, J. Porous Mater. 19, 567–572 (2012)

    Article  CAS  Google Scholar 

  5. P.-S. Joanna, C. Bogusław, L. Joanna, J. Porous Mater. 18, 631–638 (2011)

    Article  CAS  Google Scholar 

  6. C. Defonseka, Practical Guide to Flexible Polyurethane Foams, 1st edn. (Smithers Rapra Technology Ltd., Shrewsbury, 2013), p. 41

    Google Scholar 

  7. R.A. Neff, C.W. Macosko, Rheol. Acta 35, 656–666 (1996)

    Article  CAS  Google Scholar 

  8. E. Mora, L.D. Artavia, C.W. Macosko, J. Rheol. 35, 921–940 (1991)

    Article  CAS  Google Scholar 

  9. K. Yasunaga, R.A. Neff, X.D. Zhang, C.W. Macosko, J. Cell. Plast. 32, 427–448 (1996)

    CAS  Google Scholar 

  10. M. Bernal, M.A. Lopez-Manchado, R. Verdejo, Macromol. Chem. Phys. 212, 971–979 (2011)

    Article  CAS  Google Scholar 

  11. M.J. Elwell, A.J. Ryan, H.J.M. Grunbauer, H.C. Van Lieshout, Polymer 37, 1353–1361 (1996)

    Article  CAS  Google Scholar 

  12. M.J. Elwell, A.J. Ryan, H.J.M. Gruenbauer, H.C. Van Lieshout, Macromolecules 29, 2960–2968 (1996)

    Article  CAS  Google Scholar 

  13. A.L. Daniel-da-Silva, J.C.M. Bordado, J.M. Martin-Martinez, J. Appl. Polym. Sci. 107, 700–709 (2008)

    Article  CAS  Google Scholar 

  14. J.V. McClusky, R.D. Priester, R.E. O’Neill, W.R. Willkomm, M.D. Heaney, M.A. Capel, J. Cell. Plast. 30, 338–360 (1994)

    Article  CAS  Google Scholar 

  15. A.M. Heintz, D.J. Duffy, C.M. Nelson, Y. Hua, S.L. Hsu, W. Suen, C.W. Paul, Macromolecules 38, 9192–9199 (2005)

    Article  CAS  Google Scholar 

  16. W. Li, A.J. Ryan, I.K. Meier, Macromolecules 35, 6306–6312 (2002)

    Article  CAS  Google Scholar 

  17. A. Marcos-Fernandez, A.E. Lozano, L. Gonzalez, A. Rodriguez, Macromolecules 30, 3584–3592 (1997)

    Article  CAS  Google Scholar 

  18. J.A. De Haseth, J.E. Andrews, J.V. McClusky, R.D. Priester, M.A. Harthcock, B.L. Davis, Appl. Spectrosc. 47, 173–179 (1993)

    Article  Google Scholar 

  19. E. Delebecq, J.-P. Pascault, B. Boutevin, F. Ganachaud, Chem. Rev. 113, 80–118 (2013)

    Article  CAS  Google Scholar 

  20. C. Hepburn, Polyurethane Elastomers, 1st edn. (Applied Science Publishers Ltd., London, 1982), p. 88

    Google Scholar 

  21. R. Gayathri, R. Vasanthakumari, C. Padmanabhan, Int. J. Specif. Eng. Res. 4, 301–308 (2013)

    Google Scholar 

  22. J. Lee, G.-H. Kim, C.-S. Ha, J. Appl. Polym. Sci. 123, 2384–2390 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the 2015 Research Fund of the University of Seoul.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung Hyeun Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gwon, J.G., Kim, S.K. & Kim, J.H. Development of cell morphologies in manufacturing flexible polyurethane urea foams as sound absorption materials. J Porous Mater 23, 465–473 (2016). https://doi.org/10.1007/s10934-015-0100-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-015-0100-0

Keywords

Navigation