Skip to main content
Log in

Abstract

Additive manufacturing (AM) also known as 3D printing have been making inroads into medical applications such as surgical models and tools, tooling equipment, medical devices. One key area researchers are looking into is bioimplants. With the improvement and development of AM technologies, many different bioimplants can be made using 3D printing. Different biomaterials and various AM technologies can be used to create customized bioimplants to suit the individual needs. With the aid of 3D printing this could lead to new foam and design of bioimplants in the near further. Therefore, the purpose of this review articles is to (1) Describe the various AM technologies and process used to make bioimplants, (2) Different types of bioimplants printed with AM and (3) Discuss some of the challenges and future developments for 3D printed bioimplants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DGBMT, “Bioimplants: Biological, Biologised and Biofunctionalised Implants,” http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Publikationen/Stellungnahmen/VDE_acatech_PP_Bioimplants_E_RZ_Web_final. pdf (Accessed 1 APR 2015)

    Google Scholar 

  2. Wohlers, T. T., “Wohlers Report 2013: Additive Manufacturing and 3D Printing State of the Industry: Annual Worldwide Progress Report”, 2013.

    Google Scholar 

  3. Salmi, M., Tuomi, J., Paloheimo, K.-S., Björkstrand, R., Paloheimo, M., et al., “Patient-Specific Reconstruction with 3D Modeling and DMLS Additive Manufacturing,” Rapid Prototyping Journal, Vol. 18, No. 3, pp. 209–214, 2012.

    Article  Google Scholar 

  4. Jakab, K., Norotte, C., Marga, F., Murphy, K., Vunjak-Novakovic, G., and Forgacs, G., “Tissue Engineering by Self-Assembly and Bio-Printing of Living Cells,” Biofabrication, Vol. 2, No. 2, Paper No. 022001, 2010.

    Google Scholar 

  5. Warnke, P. H., Seitz, H., Warnke, F., Becker, S. T., Sivananthan, S., et al., “Ceramic Scaffolds Produced by Computer-Assisted 3D Printing and Sintering: Characterization and Biocompatibility Investigations,” Journal of Biomedical Materials Research Part B: Applied Biomaterials, Vol. 93, No. 1, pp. 212–217, 2010.

    Google Scholar 

  6. Kruth, J., Vandenbroucke, B., Van Vaerenbergh, J., and Naert, I., “Digital Manufacturing of Biocompatible Metal Frameworks for Complex Dental Prostheses by Means of SLS/SLM,” Virtual Prototyping and Rapid Manufacturing-Advanced research in virtual and Rapid Prototyping, Taylor & Francis, pp. 139–146, 2005.

    Google Scholar 

  7. Lavine, M., Roberts, L., and Smith, O., “If I Only Had a,” Science, Vol. 295, No. 5557, p. 995, 2002.

    Article  Google Scholar 

  8. Kolan, K. C., Leu, M. C., Hilmas, G. E., Brown, R. F., and Velez, M., “Fabrication of 13-93 Bioactive Glass Scaffolds for Bone Tissue Engineering using Indirect Selective Laser Sintering,” Biofabrication, Vol. 3, No. 2, Paper No. 025004, 2011.

    Google Scholar 

  9. U.S. Food and Drug Administration, “IDE Definitions and Acronyms,” http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/HowtoMarketYourDevice/InvestigationalDevice ExemptionIDE/ucm046698.htm (Accessed 1 APR 2015)

    Google Scholar 

  10. Giannatsis, J. and Dedoussis, V., “Additive Fabrication Technologies Applied to Medicine and Health Care: A Review,” The International Journal of Advanced Manufacturing Technology, Vol. 40, No. 1–2, pp. 116–127, 2009.

    Article  Google Scholar 

  11. Webb, P., “A Review of Rapid Prototyping (RP) Techniques in the Medical and Biomedical Sector,” Journal of Medical Engineering & Technology, Vol. 24, No. 4, pp. 149–153, 2000.

    Article  Google Scholar 

  12. Melchels, F. P., Domingos, M. A., Klein, T. J., Malda, J., Bartolo, P. J., and Hutmacher, D. W., “Additive Manufacturing of Tissues and Organs,” Progress in Polymer Science, Vol. 37, No. 8, pp. 1079–1104, 2012.

    Article  Google Scholar 

  13. Honiball, J. R., “The Application of 3D Printing in Reconstructive Surgery,” Stellenbosch: University of Stellenbosch, 2010.

    Google Scholar 

  14. Bourell, D. L., Leu, M. C., and Rosen, D. W., “Roadmap for Additive Manufacturing: Identifying the Future of Freeform Processing,” The University of Texas at Austin, 2009.

    Google Scholar 

  15. Chua, C. K., Leong, K. F., and Lim, C. S., “Rapid Prototyping: Principles and Applications,” World Scientific, 2010.

    Google Scholar 

  16. Rezende, R. A., Pereira, F. D., Kasyanov, V., Ovsianikov, A., Torgensen, J., et al., “Design, Physical Prototyping and Initial Characterisation of ‘Lockyballs’ this Paper Reports the Fabrication of Interlockable Microscale Scaffolds using Two Photon Polymerization (2pp) and Proposes a “Lockyball” Approach for Tissue Self-Assembly for Biofabrication,” Virtual and Physical Prototyping, Vol. 7, No. 4, pp. 287–301, 2012.

    Article  Google Scholar 

  17. Ferris, C. J., Gilmore, K. G., and Wallace, G. G., “Biofabrication: An Overview of the Approaches Used for Printing of Living Cells,” Applied Microbiology and Biotechnology, Vol. 97, No. 10, pp. 4243–4258, 2013.

    Article  Google Scholar 

  18. Peltola, S. M., Melchels, F. P., Grijpma, D. W., and Kellomäki, M., “A Review of Rapid Prototyping Techniques for Tissue Engineering Purposes,” Annals of Medicine, Vol. 40, No. 4, pp. 268–280, 2008.

    Article  Google Scholar 

  19. Yeong, W. Y., Chua, C. K., Leong, K. F., and Chandrasekaran, M., “Rapid Prototyping in Tissue Engineering: Challenges and Potential,” Trends in Biotechnology, Vol. 22, No. 12, pp. 643–652, 2004.

    Article  Google Scholar 

  20. Schiele, N. R., Corr, D. T., Huang, Y., Raof, N. A., Xie, Y., and Chrisey, D. B., “Laser-based Direct-Write Techniques for Cell Printing,” Biofabrication, Vol. 2, No. 3, Paper No. 032001, 2010.

    Google Scholar 

  21. Eyers, D. and Dotchev, K., “Technology Review for Mass Customisation using Rapid Manufacturing,” Assembly Automation, Vol. 30, No. 1, pp. 39–46, 2010.

    Article  Google Scholar 

  22. He, J., Li, D., Lu, B., Wang, Z., and Zhang, T., “Custom Fabrication of a Composite Hemi-Knee Joint based on Rapid Prototyping,” Rapid Prototyping Journal, Vol. 12, No. 4, pp. 198–205, 2006.

    Article  Google Scholar 

  23. Singare, S., Yaxiong, L., Dichen, L., Bingheng, L., Sanhu, H., and Gang, L., “Fabrication of Customised Maxillo-Facial Prosthesis using Computer-Aided Design and Rapid Prototyping Techniques,” Rapid Prototyping Journal, Vol. 12, No. 4, pp. 206–213, 2006.

    Article  Google Scholar 

  24. Chang, C., Lee, M., and Wang, S., “Digital Denture Manufacturing- An Integrated Technologies of Abrasive Computer Tomography, CNC Machining and Rapid Prototyping,” The International Journal of Advanced Manufacturing Technology, Vol. 31, No. 1–2, pp. 41–49, 2006.

    Article  Google Scholar 

  25. Eggbeer, D., Bibb, R., and Williams, R., “The Computer-Aided Design and Rapid Prototyping Fabrication of Removable Partial Denture Frameworks,” Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, Vol. 219, No. 3, pp. 195–202, 2005.

    Article  Google Scholar 

  26. Ovsianikov, A., Chichkov, B., Adunka, O., Pillsbury, H., Doraiswamy, A., and Narayan, R., “Rapid Prototyping of Ossicular Replacement Prostheses,” Applied Surface Science, Vol. 253, No. 15, pp. 6603–6607, 2007.

    Article  Google Scholar 

  27. Jardini, A., Larosa, M., Bernardes, L., Zavaglia, C., and MacielFilho, R., “Application of Direct Metal Laser Sintering in Titanium Alloy For Cranioplasty,” Proc. of 6th Brazilian Conference on Manufacturing Engineering, 2011.

    Google Scholar 

  28. Bibb, R., Eggbeer, D., and Williams, R., “Rapid Manufacture of Removable Partial Denture Frameworks,” Rapid Prototyping Journal, Vol. 12, No. 2, pp. 95–99, 2006.

    Article  Google Scholar 

  29. Vandenbroucke, B. and Kruth, J. P., “Selective Laser Melting of Biocompatible Metals for Rapid Manufacturing of Medical Parts,” Rapid Prototyping Journal, Vol. 13, No. 4, pp. 196–203, 2007.

    Article  Google Scholar 

  30. Hollander, D. A., Von Walter, M., Wirtz, T., Sellei, R., Schmidt-Rohlfing, B.,et al., “Structural, Mechanical and in Vitro Characterization of Individually Structured Ti-6Al-4V Produced by Direct Laser Forming,” Biomaterials, Vol. 27, No. 7, pp. 955–963, 2006.

    Article  Google Scholar 

  31. Li, X., Wang, J., Shaw, L. L., and Cameron, T. B., “Laser Densification of Extruded Dental Porcelain Bodies in Multi-Material Laser Densification Process,” Rapid Prototyping Journal, Vol. 11, No. 1, pp. 52–58, 2005.

    Article  Google Scholar 

  32. Meszaros, R., Zhao, R., Travitzky, N., Fey, T., Greil, P., and Wondraczek, L., “Three-Dimensional Printing of a Bioactive Glass,” Glass Technology-European Journal of Glass Science and Technology Part A, Vol. 52, No. 4, pp. 111–116, 2011.

    Google Scholar 

  33. Harrysson, O. L., Cansizoglu, O., Marcellin-Little, D. J., Cormier, D. R., and West, H. A., “Direct Metal Fabrication of Titanium Implants with Tailored Materials and Mechanical Properties using Electron Beam Melting Technology,” Materials Science and Engineering: C, Vol. 28, No. 3, pp. 366–373, 2008.

    Article  Google Scholar 

  34. Yang, J., Cai, H., Lv, J., Zhang, K., Leng, H.,et al., “In Vivo Study of a Self-Stabilizing Artificial Vertebral Body Fabricated by Electron Beam Melting,” Spine, Vol. 39, No. 8, pp. E486–E492, 2014.

    Google Scholar 

  35. Vorndran, E., Klammert, U., Ewald, A., Barralet, J. E., and Gbureck, U., “Simultaneous Immobilization of Bioactives during 3D Powder Printing of Bioceramic Drug-Release Matrices,” Advanced Functional Materials, Vol. 20, No. 10, pp. 1585–1591, 2010.

    Article  Google Scholar 

  36. Ciocca, L. and Scotti, R., “CAD-CAM Generated Ear Cast by Means of a Laser Scanner and Rapid Prototyping Machine,” The Journal of Prosthetic Dentistry, Vol. 92, No. 6, pp. 591–595, 2004.

    Article  Google Scholar 

  37. Murphy, S. V. and Atala, A., “3D Bioprinting of Tissues and Organs,” Nature Biotechnology, Vol. 32, No. 8, pp. 773–785, 2014.

    Article  Google Scholar 

  38. Cui, X., Breitenkamp, K., Finn, M., Lotz, M., and D’Lima, D. D., “Direct Human Cartilage Repair using Three-Dimensional Bioprinting Technology,” Tissue Engineering Part A, Vol. 18, No. 11–12, pp. 1304–1312, 2012.

    Article  Google Scholar 

  39. Struecker, B., Raschzok, N., and Sauer, I. M., “Liver Support Strategies: Cutting-Edge Technologies,” Nature Reviews Gastroenterology & Hepatology, Vol. 11, No. 3, pp. 166–176, 2014.

    Article  Google Scholar 

  40. Chang, R., Emami, K., Wu, H., and Sun, W., “Biofabrication of a Three-Dimensional Liver Micro-Organ as an In Vitro Drug Metabolism Model,” Biofabrication, Vol. 2, No. 4, Paper No. 045004, 2010.

    Google Scholar 

  41. Snyder, J., Hamid, Q., Wang, C., Chang, R., Emami, K., et al., “Bioprinting Cell-Laden Matrigel for Radioprotection Study of Liver By Pro-Drug Conversion in a Dual-Tissue Microfluidic Chip,” Biofabrication, Vol. 3, No. 3, Paper No. 034112, 2011.

    Google Scholar 

  42. Jakab, K., Norotte, C., Damon, B., Marga, F., Neagu, A., et al., “Tissue Engineering by Self-Assembly of Cells Printed into Topologically Defined Structures,” Tissue Engineering Part A, Vol. 14, No. 3, pp. 413–421, 2008.

    Article  Google Scholar 

  43. Khatiwala, C., Law, R., Shepherd, B., Dorfman, S., and Csete, M., “3D Cell Bioprinting for Regenerative Medicine Research and Therapies,” Gene Therapy and Regulation, Vol. 7, No. 1, Paper No. 1230004, 2012.

    Google Scholar 

  44. Koch, L., Kuhn, S., Sorg, H., Gruene, M., Schlie, S., et al., “Laser Printing of Skin Cells and Human Stem Cells,” Tissue Engineering Part C: Methods, Vol. 16, No. 5, pp. 847–854, 2009.

    Article  Google Scholar 

  45. Gruene, M., Deiwick, A., Koch, L., Schlie, S., Unger, C., et al., “Laser Printing of Stem Cells for Biofabrication of Scaffold-Free Autologous Grafts,” Tissue Engineering Part C: Methods, Vol. 17, No. 1, pp. 79–87, 2010.

    Article  Google Scholar 

  46. Gaebel, R., Ma, N., Liu, J., Guan, J., Koch, L., et al., “Patterning Human Stem Cells and Endothelial Cells with Laser Printing for Cardiac Regeneration,” Biomaterials, Vol. 32, No. 35, pp. 9218–9230, 2011.

    Article  Google Scholar 

  47. Syam, W. P., Mannan, M., and Al-Ahmari, A., “Rapid Prototyping and Rapid Manufacturing in Medicine and Dentistry: This Paper Presents an Overview of Recent Developments in the Field of Rapid Prototyping and Rapid Manufacturing with Special Emphasis in Medicine and Dentistry,” Virtual and Physical Prototyping, Vol. 6, No. 2, pp. 79–109, 2011.

    Article  Google Scholar 

  48. Ozbolat, I. T. and Yu, Y., “Bioprinting Toward Organ Fabrication: Challenges and Future Trends,” IEEE Transactions on Biomedical Engineering, Vol. 60, No. 3, pp. 691–699, 2013.

    Article  Google Scholar 

  49. Al Mardini, M., Ercoli, C., and Graser, G. N., “A Technique to Produce a Mirror-Image Wax Pattern of an Ear using Rapid Prototyping Technology,” The Journal of prosthetic Dentistry, Vol. 94, No. 2, pp. 195–198, 2005.

    Article  Google Scholar 

  50. Liu, Q., Leu, M. C., and Schmitt, S. M., “Rapid Prototyping in Dentistry: Technology and Application,” The International Journal of Advanced Manufacturing Technology, Vol. 29, No. 3–4, pp. 317–335, 2006.

    Article  Google Scholar 

  51. Wu, M., Tinschert, J., Augthun, M., Wagner, I., Schädlich-Stubenrauch, J., et al., “Application of Laser Measuring, Numerical Simulation and Rapid Prototyping to Titanium Dental Castings,” Dental Materials, Vol. 17, No. 2, pp. 102–108, 2001.

    Article  Google Scholar 

  52. Leong, K. F., Chua, C. K., and Gui, W. S., “Building Porous Biopolymeric Microstructures for Controlled Drug Delivery Devices using Selective Laser Sintering,” The International Journal of Advanced Manufacturing Technology, Vol. 31, No. 5–6, pp. 483–489, 2006.

    Article  Google Scholar 

  53. Low, K., Leong, K., Chua, C., Du, Z., and Cheah, C., “Characterization of SLS Parts for Drug Delivery Devices,” Rapid Prototyping Journal, Vol. 7, No. 5, pp. 262–268, 2001.

    Article  Google Scholar 

  54. Manzano, M. and Vallet-Regí, M., “Revisiting Bioceramics: Bone Regenerative and Local Drug Delivery Systems,” Progress in Solid State Chemistry, Vol. 40, No. 3, pp. 17–30, 2012.

    Article  Google Scholar 

  55. Wu, C., Luo, Y., Cuniberti, G., Xiao, Y., and Gelinsky, M., “Three- Dimensional Printing of Hierarchical and Tough Mesoporous Bioactive Glass Scaffolds with a Controllable Pore Architecture, Excellent Mechanical Strength and Mineralization Ability,” Acta Biomaterialia, Vol. 7, No. 6, pp. 2644–2650, 2011.

    Article  Google Scholar 

  56. Sharp, P., Cooney, C., Kastner, M., Lees, J., Sasisekharan, R., et al., “The Third Revolution: The Convergence of the Life Sciences, Physical Sciences, and Engineering,” Massachusetts Institute of Technology, 2011.

    Google Scholar 

  57. Sharp, P. A. and Langer, R., “Promoting Convergence in Biomedical Science,” Science, Vol. 333, No. 6042, p. 527, 2011.

    Article  Google Scholar 

  58. Bens, A., Seitz, H., Bermes, G., Emons, M., Pansky, A., et al., “Non-Toxic Flexible Photopolymers for Medical Stereolithography Technology,” Rapid Prototyping Journal, Vol. 13, No. 1, pp. 38–47, 2007.

    Article  Google Scholar 

  59. Chou, D. T., Wells, D., Hong, D., Lee, B., Kuhn, H., and Kumta, P. N., “Novel Processing of Iron–Manganese Alloy-based Biomaterials by Inkjet 3-D Printing,” Acta Biomaterialia, Vol. 9, No. 10, pp. 8593–8603, 2013.

    Article  Google Scholar 

  60. Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., et al., “Superior Thermal Conductivity of Single-Layer Graphene,” Nano Letters, Vol. 8, No. 3, pp. 902–907, 2008.

    Article  Google Scholar 

  61. Lee, C., Wei, X., Kysar, J. W., and Hone, J., “Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene,” Science, Vol. 321, No. 5887, pp. 385–388, 2008.

    Article  Google Scholar 

  62. Novoselov, K. S., Geim, A. K., Morozov, S., Jiang, D., Zhang, Y., et al., “Electric Field Effect in Atomically Thin Carbon Films,” Science, Vol. 306, No. 5696, pp. 666–669, 2004.

    Article  Google Scholar 

  63. Bunch, J. S., Verbridge, S. S., Alden, J. S., van der Zande, A. M., Parpia, J. M., et al., “Impermeable Atomic Membranes from Graphene Sheets,” Nano Letters, Vol. 8, No. 8, pp. 2458–2462, 2008.

    Article  Google Scholar 

  64. Tölle, F. J., Fabritius, M., and Mülhaupt, R., “Emulsifier-Free Graphene Dispersions with High Graphene Content for Printed Electronics and Freestanding Graphene Films,” Advanced Functional Materials, Vol. 22, No. 6, pp. 1136–1144, 2012.

    Article  Google Scholar 

  65. Ladd, C., So, J. H., Muth, J., and Dickey, M. D., “3D Printing of Free Standing Liquid Metal Microstructures,” Advanced Materials, Vol. 25, No. 36, pp. 5081–5085, 2013.

    Article  Google Scholar 

  66. Stratasys, “Stratasys Design Series,” http://www.stratasys.com/3dprinters/design-series (Accessed 1 APR 2015)

    Google Scholar 

  67. Mustaffa, B., Narahara, H., and Suzuki, H., “Electronic Circuit Fabrication using Inkjet Printed Silver Nanoparticles for SFF,” Proc. of Japan Society for Precision Engineering National Conference, pp. 83–84, 2004.

    Google Scholar 

  68. 3D Printing Industry, “3D Printing Breakthrough Yields Organic and Inorganic Multimaterial Vista Printhead,” http://3dprintingindustry.com/2013/09/06/3d-printing-breakthrough-yields-organic-andinorganic-multimaterial-vista-printhead/ (Accessed 1 APR 2015)

    Google Scholar 

  69. Mannoor, M. S., Jiang, Z., James, T., Kong, Y. L., Malatesta, K. A., et al., “3D Printed Bionic Ears,” Nano Letters, Vol. 13, No. 6, pp. 2634–2639, 2013.

    Article  Google Scholar 

  70. Khalil, S., Nam, J., and Sun, W., “Multi-Nozzle Deposition for Construction of 3D Biopolymer Tissue Scaffolds,” Rapid Prototyping Journal, Vol. 11, No. 1, pp. 9–17, 2005.

    Article  Google Scholar 

  71. Khalil, S., Nam, J., and Sun, W., “Multi-Nozzle Deposition for Construction of 3D Biopolymer Tissue Scaffolds,” Rapid Prototyping Journal, Vol. 11, No. 1, pp. 9–17, 2006.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Jin Yoon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ho, C.M.B., Ng, S.H. & Yoon, YJ. A review on 3D printed bioimplants. Int. J. Precis. Eng. Manuf. 16, 1035–1046 (2015). https://doi.org/10.1007/s12541-015-0134-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-015-0134-x

Keywords

Navigation