Skip to main content
Log in

Biomechanical evaluation of new total knee arthroplasty (TKA) enabling high deep flexion: Stand-sit-stand motion condition

  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

This study aimed to determine the clinical applicability of the new TKA by evaluating biomechanical stability through measurement of contact pressure and strain distribution in the proximal tibia during the stand-sit-stand motion. The reaction forces generated during knee flexion from 0° to 140° were measured in eight men (25±2 years, 23±4 kg/m2) using two force-plates integrated with a computer-aided video motion capture system and were used for load applications in the mechanical test to identify the contact pressure and strain distribution in the tibia with the new TKA. The results indicate that the new TKA may be appropriate for sharing and transfer of physiological loads on the tibia without critical damage to the tibia and TKA during the high deep flexion associated with the stand-sit-stand motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Culliford, D., Maskell, J., Beard, D., Murray, D., Price, A., and Arden, N. K., “Temporal Trends in Hip and Knee Replacement in the United Kingdom 1991 to 2006,” Journal of Bone & Joint Surgery, Vol. 92, No. 1, pp. 130–135, 2010.

    Article  Google Scholar 

  2. Robertsson, O., Bizjajeva, S., Fenstad, A. M., Furnes, O., Lidgren, L., et al., “Knee Arthroplasty in Denmark, Norway and Sweden: A Pilot Study from the Nordic Arthroplasty Register Association,” Acta Orthopaedica, Vol. 81, No. 1, pp. 82–89, 2010.

    Article  Google Scholar 

  3. Carr, A. J., Robertsson, O., Graves, S., Price, A. J., Arden, N. K., et al., “Knee Replacement,” The Lancet, Vol. 379, No. 9823, pp. 1331–1340, 2012.

    Article  Google Scholar 

  4. Kim, H. A., Kim, S., Seo, Y., Choi, H., Seong, S. C., et al., “The Epidemiology of Total Knee Replacement in South Korea: National Registry Data,” Rheumatology, Vol. 47, No. 1, pp. 88–91, 2008.

    Article  Google Scholar 

  5. Stern, S. and Insall, J., “Posterior Stabilized Prosthesis. Results after Follow-up of Nine to Twelve Years,” The Journal of Bone & Joint Surgery, Vol. 74, No. 7, pp. 980–986, 1992.

    Google Scholar 

  6. Robertsson, O., Knutson, K., Lewold, S., and Lidgren, L., “The Swedish Knee Arthroplasty Register 1975–1997: An Update with Special Emphasis on 41,223 Knees Operated on in 1988–1997,” Acta Orthopaedica, Vol. 72, No. 5, pp. 503–513, 2001.

    Article  Google Scholar 

  7. Walsh, M., Woodhouse, L. J., Thomas, S. G., and Finch, E., “Physical Impairments and Functional Limitations: A Comparison of Individuals 1 Year after Total Knee Arthroplasty with Control Subjects,” Physical Therapy, Vol. 78, No. 3, pp. 248–258, 1998.

    Google Scholar 

  8. Tarabichi, S., Tarabichi, Y., and Hawari, M., “Achieving Deep Flexion after Primary Total Knee Arthroplasty,” The Journal of Arthroplasty, Vol. 25, No. 2, pp. 219–224, 2010.

    Article  Google Scholar 

  9. Mizner, R. L., Petterson, S. C., Clements, K. E., Zeni Jr, J. A., Irrgang, J. J., and Snyder-Mackler, L., “Measuring Functional Improvement after Total Knee Arthroplasty Requires both Performance-based and Patient-Report Assessments: A Longitudinal Analysis of Outcomes,” The Journal of Arthroplasty, Vol. 26, No. 5, pp. 728–737, 2011.

    Article  Google Scholar 

  10. Walker, P. S., Heller, Y., Cleary, D. J., and Yildirim, G., “Preclinical Evaluation Method for Total Knees Designed to Restore Normal Knee Mechanics,” The Journal of Arthroplasty, Vol. 26, No. 1, pp. 152–160, 2011.

    Article  Google Scholar 

  11. Noble, P. C., Gordon, M. J., Weiss, J. M., Reddix, R. N., Conditt, M. A., and Mathis, K. B., “Does Total Knee Replacement Restore Normal Knee Function?” Clinical Orthopaedics and Related Research, Vol. 431, No. pp. 157–165, 2005.

    Article  Google Scholar 

  12. Tew, M., Forster, I., and Wallace, W., “Effect of Total Knee Arthroplasty on Maximal Flexion,” Clinical Orthopaedics and Related Research, Vol. 247, No. pp. 168–174, 1989.

    Google Scholar 

  13. Hefzy, M. S., Kelly, B. P., and Cooke, T. D. V., “Kinematics of the Knee Joint in Deep Flexion: A Radiographic Assessment,” Medical Engineering & Physics, Vol. 20, No. 4, pp. 302–307, 1998.

    Article  Google Scholar 

  14. Kurosaka, M., Yoshiya, S., Mizuno, K., and Yamamoto, T., “Maximizing Flexion after Total Knee Arthroplasty: The Need and the Pitfalls,” The Journal of Arthroplasty, Vol. 17, No. 4, pp. 59–62, 2002.

    Article  Google Scholar 

  15. Yoshino, S., Nakamura, H., Shiga, H., and Ishiuchi, N., “Recovery of Full Flexion after Total Knee Replacement in Rheumatoid Arthritis — a Follow-up Study,” International Orthopaedics, Vol. 21, No. 2, pp. 98–100, 1997.

    Article  Google Scholar 

  16. Yamazaki, J., Ishigami, S., Nagashima, M., and Yoshino, S., “Hy-Flex II Total Knee System and Range of Motion,” Archives of Orthopaedic and Trauma Surgery, Vol. 122, No. 3, pp. 156–160, 2002.

    Article  Google Scholar 

  17. Huang, H. T., Su, J. Y., and Wang, G. J., “The Early Results of High-Flex Total Knee Arthroplasty: A Minimum of 2 Years of Follow-up,” The Journal of Arthroplasty, Vol. 20, No. 5, pp. 674–679, 2005.

    Article  Google Scholar 

  18. Coughlin, K. M., Incavo, S. J., Doohen, R. R., Gamada, K., Banks, S., and Beynnon, B. D., “Kneeling Kinematics after Total Knee Arthroplasty: Anterior-Posterior Contact Position of a standard and a High-Flex Tibial Insert Design,” The Journal of Arthroplasty, Vol. 22, No. 2, pp. 160–165, 2007.

    Article  Google Scholar 

  19. Evstigneeva, M., Aleksandrov, A., Mathiassen, S. E., and Lyskov, E., “Concurrent Cognitive Task may Improve Motor Work Performance and Reduce Muscle Fatigue,” Work: A Journal of Prevention, Assessment and Rehabilitation, Vol. 41, pp. 2893–2896, 2012.

    Google Scholar 

  20. Gardner, M. P., Chong, A. C., Pollock, A. G., and Wooley, P. H., “Mechanical Evaluation of Large-Size Fourth-Generation Composite Femur and Tibia Models,” Annals of Biomedical Engineering, Vol. 38, No. 3, pp. 613–620, 2010.

    Article  Google Scholar 

  21. Bäthis, H., Perlick, L., Tingart, M., Lüring, C., Zurakowski, D., and Grifka, J., “Alignment in Total Knee Arthroplasty a Comparison of Computer-Assisted Surgery with the Conventional Technique,” Journal of Bone & Joint Surgery, British Volume, Vol. 86, No. 5, pp. 682–687, 2004.

    Article  Google Scholar 

  22. Zhao, D., Banks, S. A., D’Lima, D. D., Colwell, C. W., and Fregly, B. J., “In Vivo Medial and Lateral Tibial Loads during Dynamic and High Flexion Activities,” Journal of Orthopaedic Research, Vol. 25, No. 5, pp. 593–602, 2007.

    Article  Google Scholar 

  23. Shelburne, K. B., Torry, M. R., and Pandy, M. G., “Muscle, Ligament, and Joint-Contact Forces at the Knee during Walking,” Medicine and Science in Sports and Exercise, Vol. 37, No. 11, pp. 1948–1956, 2005.

    Article  Google Scholar 

  24. Komistek, R. D., Stiehl, J. B., Dennis, D. A., Paxson, R. D., and Soutas-Little, R. W., “Mathematical Model of the Lower Extremity Joint Reaction Forces Using Kane’s Method of Dynamics,” Journal of Biomechanics, Vol. 31, No. 2, pp. 185–189, 1997.

    Article  Google Scholar 

  25. Bobbert, M. F., Huijing, P. A., Van Ingen Schenau, G. J., “Drop Jumping. II. The Influence of Dropping Height on the Biomechanics of Drop Jumping,” Medicine & Science in Sports & Exercise, Vol. 19, No. 4, pp. 339–346, 1987.

    Google Scholar 

  26. Costigan, P. A., Deluzio, K. J., and Wyss, U. P., “Knee and Hip Kinetics during Normal Stair Climbing,” Gait & Posture, Vol. 16, No. 1, pp. 31–37, 2002.

    Article  Google Scholar 

  27. Jin, Z., Stewart, T., Auger, D., Dowson, D., and Fisher, J., “Contact Pressure Prediction in Total Knee Joint Replacements Part 2: Application to the Design of Total Knee Joint Replacements,” Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, Vol. 209, No. 1, pp. 9–15, 1995.

    Article  Google Scholar 

  28. McNamara, J. L., Collier, J. P., Mayor, M. B., and Jensen, R. E., “A Comparison of Contact Pressures in Tibial and Patellar Total Knee Components before and after Service in Vivo,” Clinical Orthopaedics and Related Research, Vol. 299, pp. 104–113, 1994.

    Google Scholar 

  29. Szivek, J., Cutignola, L., and Volz, R., “Tibiofemoral Contact Stress and Stress Distribution Evaluation of Total Knee Arthroplasties,” The Journal of Arthroplasty, Vol. 10, No. 4, pp. 480–491, 1995.

    Article  Google Scholar 

  30. Wilk, K. E., Escamilla, R. F., Fleisig, G. S., Barrentine, S. W., Andrews, J. R., and Boyd, M. L., “A Comparison of Tibiofemoral Joint Forces and Electromyographic Activit during Open and Closed Kinetic Chain Exercises,” The American Journal of Sports Medicine, Vol. 24, No. 4, pp. 518–527, 1996.

    Article  Google Scholar 

  31. Matsuda, Y., Ishii, Y., Noguchi, H., and Ishii, R., “Effect of Flexion Angle on Coronal Laxity in Patients with Mobile-Bearing Total Knee Arthroplasty Prostheses,” Journal of Orthopaedic Science, Vol. 10, No. 1, pp. 37–41, 2005.

    Article  Google Scholar 

  32. Graham, D. R., “Polyethylene Wear: A Cause of Failure of the Variable-Axis Total Knee Prosthesis (a Report of Three Cases),” Journal of Bone and Joint Surgery, Vol. 70, No. 6, pp. 942–943, 1988.

    Google Scholar 

  33. Engh, C. A., O’Connor, D., Jasty, M., McGovern, T. F., Bobyn, J. D., and Harris, W. H., “Quantification of Implant Micromotion, Strain Shielding, and Bone Resorption with Porous-Coated Anatomic Medullary Locking Femoral Prostheses,” Clinical Orthopaedics and Related Research, Vol. 285, pp. 13–29, 1992.

    Google Scholar 

  34. Green, G. V., Berend, K. R., Berend, M. E., Glisson, R. R., and Vail, T. P., “The Effects of Varus Tibial Alignment on Proximal Tibial Surface Strain in Total Knee Arthroplasty: The Posteromedial Hot Spot,” The Journal of Arthroplasty, Vol. 17, No. 8, pp. 1033–1039, 2002.

    Article  Google Scholar 

  35. Completo, A., Fonseca, F., and Simoes, J., “Strain Shielding in Proximal Tibia of Stemmed Knee Prosthesis: Experimental Study,” Journal of Biomechanics, Vol. 41, No. 3, pp. 560–566, 2008.

    Article  Google Scholar 

  36. Completo, A., Fonseca, F., and Simoes, J., “Strain Shielding in Proximal Tibia of Stemmed Knee Prosthesis: Experimental Study,” Journal of Biomechanics, Vol. 41, No. 3, pp. 560–566, 2008.

    Article  Google Scholar 

  37. Pattin, C., Caler, W., and Carter, D., “Cyclic Mechanical Property Degradation during Fatigue Loading of Cortical Bone,” Journal of Biomechanics, Vol. 29, No. 1, pp. 69–79, 1996.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dohyung Lim.

Additional information

Paul Han and Young Woong Jang contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, P., Jang, Y.W., Kim, J.S. et al. Biomechanical evaluation of new total knee arthroplasty (TKA) enabling high deep flexion: Stand-sit-stand motion condition. Int. J. Precis. Eng. Manuf. 15, 2623–2629 (2014). https://doi.org/10.1007/s12541-014-0636-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-014-0636-y

Keywords

Navigation