Skip to main content

Tribology of graphene: A review

Abstract

Graphene has received significant attention due to its combination of remarkable mechanical, thermal, chemical and electrical properties. Furthermore, due to its superior strength, graphene has great potential for use as an ultra-thin protective coating for various precision components. In this paper, the latest developments in tribological applications of graphene, theoretical simulations of graphene friction and preparation methods are reviewed. It is shown that various graphene coatings can be successfully used to decrease friction and wear in nano-, micro- and macro-mechanical applications. However, the conditions under which graphene serves as an effective protective coating depends on the operating parameters. A comprehensive review is provided with the aim to assess such characteristics of graphene.

This is a preview of subscription content, access via your institution.

References

  1. Beerschwinger U., Mathieson D., Reuben R. L., and Yang S. J., “A Study of Wear on MEMS Contact Morphologies,” Journal of Micromechanics and Microengineering, Vol. 4, No. 3, pp. 95–105, 1994.

    Article  Google Scholar 

  2. Kim H. J. and Kim D. E., “Nano-Scale Friction: A Review,” Int. J. Precis. Eng. Manuf., Vol. 10, No. 2, pp. 141–151, 2009.

    Article  Google Scholar 

  3. Kim H. J., Yoo S. S., and Kim D. E., “Nano-Scale Wear: A Review,” Int. J. Precis. Eng. Manuf., Vol. 13, No. 9, pp. 1709–1718, 2012.

    Article  MathSciNet  Google Scholar 

  4. Woo Y. and Kim S. H., “Sensitivity Analysis of Plating Conditions on Mechanical Properties of Thin Film for MEMS Applications,” Journal of Mechanical Science Technology, Vol. 25, No. 4, pp. 1017–1022, 2011.

    Article  Google Scholar 

  5. Kim H. J., Jang C. E., Kim D. E., Kim Y. K., Choa S. H., and Hong S., “Effects of Self-Assembled Monolayer and PFPE Lubricant on Wear Characteristics of Flat Silicon Tips,” Tribology Letters, Vol. 34, No. 1, pp. 61–73, 2009.

    Article  Google Scholar 

  6. Penkov O. V., Bugayev Y. A., Zhuravel I. Z., Kondratenko V. V., Amanov A., and Kim D. E., “Friction and Wear Characteristics of C/Si Bi-layer Coatings Deposited on Silicon Substrate by DC Magnetron Sputtering,” Tribology Letters, Vol. 48, No. 2, pp. 123–131, 2012.

    Article  Google Scholar 

  7. Penkov, O. V., Pukha, V. E., Zubarev, E. N., Yoo, S. S., and Kim, D. E., “Tribological Properties of Nanostructured DLC Coatings Deposited by C60 Ion Beam,” Tribology International, Vol. 60, pp. 127–135, 2013.

    Article  Google Scholar 

  8. Penkov, O. V., Lee, D. H., Kim, H., and Kim, D. E., “Frictional Behavior of Atmospheric Plasma Jet Deposited Carbon-ZnO Composite Coatings,” Composites Science and Technology, Vol. 77, pp. 60–66, 2013.

    Article  Google Scholar 

  9. Novoselov K. S., Geim K. A., Morozov V. S., Jiang D., Zhang Y., and et al., “Electric Field Effect in Atomically Thin Carbon Films,” Science, Vol. 306, No. 5696, pp. 666–669, 2004.

    Article  Google Scholar 

  10. Novoselov K. S., “Graphene: Materials in the Flatland (Nobel Lecture),” Angew. Chem. Int. Ed., Vol. 50, pp. 6986–7002, 2011.

    Article  Google Scholar 

  11. Avouris, P. and Dimitrakopoulos, C., “Graphene: Synthesis and Applications,” Materials Today, Vol. 15, No. 3, pp. 86–97, 2012.

    Article  Google Scholar 

  12. Taghioskoui, M., “Trends in Graphene Research,” Materials Today, Vol. 12, No. 10, pp. 34–37, 2009.

    Article  Google Scholar 

  13. Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S.I., and Seal, S., “Graphene based Materials: Past, Present and Future,” Progress in Materials Science, Vol. 56, No. 8, pp. 1178–1271, 2011.

    Article  Google Scholar 

  14. Young, R. J., Kinloch, I. A., Gong, L., and Novoselov, K. S., “The Mechanics of Graphene Nanocomposites: A Review,” Composites Science and Technology, Vol. 72, No. 12, pp. 1459–1476, 2012.

    Article  Google Scholar 

  15. Gokus T., Nair R. R., Bonetti A., Bohmler M., Lombardo A., and et al., “Making Graphene Luminescent by Oxygen Plasma Treatment,” ACS Nano, Vol. 3, No. 12, pp. 3963–3968, 2009.

    Article  Google Scholar 

  16. Geng, Y., Wang, S. J., and Kim, J. K., “Preparation of Graphite Nanoplatelets and Graphene Sheets,” Journal of Colloid and Interface Science, Vol. 336, No. 2, pp. 592–598, 2009.

    Article  Google Scholar 

  17. Somani P. R., Somani S. P., and Umeno M., “Planer Nano-Graphenes from Camphor by CVD,” Chemical Physics Letters, Vol. 430, No. 1-3, pp. 56–59, 2006.

    Article  Google Scholar 

  18. Bhaviripudi S., Jia X., Dresselhaus M. S., and Kong J., “Role of Kinetic Factors in Chemical Vapor Deposition Synthesis of Uniform Large Area Graphene Using Copper Catalyst,” Nano Letters, Vol. 10, No. 10, pp. 4128–4133, 2010.

    Article  Google Scholar 

  19. Won, M. S., Penkov, O. V., and Kim, D. E., “Durability and Degradation Mechanism of Graphene Coatings Deposited on Cu Substrates under Dry Contact Sliding,” Carbon, Vol. 54, pp. 472–481, 2013.

    Article  Google Scholar 

  20. Hass J., De Heer W. A., and Conrad E. H., “The Growth and Morphology of Epitaxial Multilayer Graphene,” Journal of Physics Condensed Matter, Vol. 20, No. 32, pp. 323202, 2008.

    Article  Google Scholar 

  21. De Heer, W. A., Berger, C., Wu, X., First, P. N., Conrad, E. H., and et al., “Epitaxial Graphene,” Solid State Communications, Vol. 143, No. 1, pp. 92–100, 2007.

    Article  Google Scholar 

  22. Varchon, F., Feng, R., Hass, J., Li, X., Nguyen, B. N., and et al., “Electronic Structure of Epitaxial Graphene Layers on SiC: Effect of the Substrate,” Physical review letters, Vol. 99, No. 12, pp. 126805, 2007.

    Article  Google Scholar 

  23. Penuelas, J., Ouerghi, A., Lucot, D., David, C., Gierak, J., and et al., “Surface Morphology and Characterization of thin Graphene Films on SiC Vicinal Substrate,” Physical Review B, Vol. 79, No. 3, pp. 033408, 2009.

    Article  Google Scholar 

  24. Wintterlin, J. and Bocquet, M. L., “Graphene on Metal Surfaces,” Surface Science, Vol. 603, No. 10, pp. 1841–1852, 2009.

    Article  Google Scholar 

  25. AngeláRodriguez-Perez, M., De Saja, J., and AngeláLopez-Manchado, M., “Functionalized Graphene Sheet Filled Silicone Foam Nanocomposites,” Journal of Materials Chemistry, Vol. 18, No. 19, pp. 2221–2226, 2008.

    Article  Google Scholar 

  26. Gómez-Navarro, C., Weitz, R. T., Bittner, A. M., Scolari, M., Mews, A., and et al., “Electronic Transport Properties of Individual Chemically Reduced Graphene Oxide Sheets,” Nano Letters, Vol. 7, No. 11, pp. 3499–3503, 2007.

    Article  Google Scholar 

  27. Hummers Jr, W. S. and Offeman, R. E., “Preparation of Graphitic Oxide,” Journal of the American Chemical Society, Vol. 80, No. 6, pp. 1339–1339, 1958.

    Article  Google Scholar 

  28. Koh, A. T., Foong, Y. M., and Chua, D. H., “Comparison of the Mechanism of Low Defect Few-Layer Graphene Fabricated on Different Metals by Pulsed Laser Deposition,” Diamond and Related Materials, Vol. 25, No. pp. 98–102, 2012.

    Article  Google Scholar 

  29. Sasaki, N., Okamoto, H., Itamura, N., and Miura, K., “Atomic-Scale Friction of Monolayer Graphenes with Armchair-and Zigzag-Type Edges during Peeling Process,” e-Journal of Surface Science and Nanotechnology, Vol. 8, pp. 105–111, 2010.

    Article  Google Scholar 

  30. Kwon, S., Ko, J. H., Jeon, K. J., Kim, Y. H., and Park, J. Y., “Enhanced Nanoscale Friction on Fluorinated Graphene,” Nano letters, Vol. 12, No. 12, pp. 6043–6048, 2012.

    Article  Google Scholar 

  31. Sandoz-Rosado, E. J., Tertuliano, O. A., and Terrell, E. J., “An Atomistic Study of the Abrasive Wear and Failure of Graphene Sheets when used as a Solid Lubricant and a Comparison to Diamond-like-Carbon Coatings,” Carbon, Vol. 50, No. 11, pp. 4078–4084, 2012.

    Article  Google Scholar 

  32. Smolyanitsky, A., Killgore, J. P., and Tewary, V. K., “Effect of Elastic Deformation on Frictional Properties of Few-Layer Graphene,” Physical Review B, Vol. 85, No. 3, pp. 035412, 2012.

    Article  Google Scholar 

  33. Reguzzoni, M., Fasolino, A., Molinari, E., and Righi, M., “Friction by Shear Deformations in Multilayer Graphene,” The Journal of Physical Chemistry C, Vol. 116, No. 39, pp. 21104–21108, 2012.

    Article  Google Scholar 

  34. Smolyanitsky, A. and Killgore, J., “Anomalous Friction in Suspended Graphene,” Physical Review B, Vol. 86, No. 12, pp. 125432, 2012.

    Article  Google Scholar 

  35. Ansari, R., Ajori, S., and Motevalli, B., “Mechanical Properties of Defective Single-Layered Graphene Sheets Via Molecular Dynamics Simulation,” Superlattices and Microstructures, Vol. 51, No. 2, pp. 274–289, 2012.

    Article  Google Scholar 

  36. Dewapriya, M. A. N., Phani, A. S., and Rajapakse, R. K. N. D., “Influence of Temperature and Free Edges on the Mechanical Properties of Graphene,” Modelling and Simulation in Materials Science and Engineering, Vol. 21, No. 6, pp. 065017, 2013.

    Article  Google Scholar 

  37. Hu, J., Ruan, X., and Chen, Y. P., “Thermal Conductivity and Thermal Rectification in Graphene Nanoribbons: a Molecular Dynamics Study,” Nano Letters, Vol. 9, No. 7, pp. 2730–2735, 2009.

    Article  Google Scholar 

  38. Lebedeva, I. V., Knizhnik, A. A., Popov, A. M., Ershova, O. V., Lozovik, Y. E., and Potapkin, B.V., “Diffusion and Drift of Graphene Flake on Graphite Surface,” The Journal of Chemical Physics, Vol. 134, No. pp. 104505, 2011.

    Google Scholar 

  39. Fasolino, A., Los, J., and Katsnelson, M.I., “Intrinsic ripples in graphene,” Nature Materials, Vol. 6, No. 11, pp. 858–861, 2007.

    Article  Google Scholar 

  40. Bonelli, F., Manini, N., Cadelano, E., and Colombo, L., “Atomistic Simulations of the Sliding Friction of Graphene Flakes,” The European Physical Journal B, Vol. 70, No. 4, pp. 449–459, 2009.

    Article  Google Scholar 

  41. Hirano, M., Shinjo, K., Kaneko, R., and Murata, Y., “Anisotropy of Frictional Forces in Muscovite Mica,” Physical Review Letters, Vol. 67, No. 19, pp. 2642, 1991.

    Article  Google Scholar 

  42. Falvo, M. R., Steele, J., Taylor, R. M., and Superfine, R., “Gearlike Rolling Motion Mediated by Commensurate Contact: Carbon Nanotubes on HOPG,” Physical Review B, Vol. 62, No. 16, pp. 10665–10667, 2000.

    Article  Google Scholar 

  43. Lee, H., Lee, N., Seo, Y., Eom, J., and Lee, S., “Comparison of Frictional Forces on Graphene and Graphite,” Nanotechnology, Vol. 20, No. 32, pp. 325701, 2009.

    Article  Google Scholar 

  44. Lee, C., Wei, X., Li, Q., Carpick, R., Kysar, J. W., and Hone, J., “Elastic and Frictional Properties of Graphene,” Physica Status Solidi (b), Vol. 246, No. 1112, pp. 2562–2567, 2009.

    Article  Google Scholar 

  45. Filleter, T. and Bennewitz, R., “Structural and Frictional Properties of Graphene Films on SiC (0001) Studied by Atomic Force Microscopy,” Physical Review B, Vol. 81, No. 15, pp. 155412, 2010.

    Article  Google Scholar 

  46. Li, Q., Lee, C., Carpick, R. W., and Hone, J., “Substrate Effect on ThicknessDependent Friction on Graphene,” Physica Status Solidi (b), Vol. 247, No. 1112, pp. 2909–2914, 2010.

    Article  Google Scholar 

  47. Lee, C., Li, Q., Kalb, W., Liu, X. Z., Berger, H., and et al., “Frictional Characteristics of Atomically Thin Sheets,” Science, Vol. 328, No. 5974, pp. 76–80, 2010.

    Article  Google Scholar 

  48. Cho, D. H., Wang, L., Kim, J. S., Lee, G. H., Kim, E. S., and et al., “Effect of Surface Morphology on Friction of Graphene on Various Substrates,” Nanoscale, Vol. 5, No. 7, pp. 3063–3069, 2013.

    Article  Google Scholar 

  49. Lin, L. Y., Kim, D. E., Kim, W. K., and Jun, S. C., “Friction and Wear Characteristics of Multi-Layer Graphene Films Investigated by Atomic Force Microscopy,” Surface and Coatings Technology, Vol. 205, No. 20, pp. 4864–4869, 2011.

    Article  Google Scholar 

  50. Kim, K. S., Lee, H. J., Lee, C., Lee, S. K., Jang, H., and et al., “Chemical Vapor Deposition-Grown Graphene: the Thinnest Solid Lubricant,” ACS Nano, Vol. 5, No. 6, pp. 5107–5114, 2011.

    Article  Google Scholar 

  51. Shin, Y. J., Stromberg, R., Nay, R., Huang, H., Wee, A. T., and et al., “Frictional Characteristics of Exfoliated and Epitaxial Graphene,” Carbon, Vol. 49, No. 12, pp. 4070–4073, 2011.

    Article  Google Scholar 

  52. Yan, C., Kim, K. S., Lee, S. K., Bae, S. H., Hong, B. H., and et al., “Mechanical and Environmental Stability of Polymer Thin-Film-Coated Graphene,” ACS Nano, Vol. 6, No. 3, pp. 2096–2103, 2011.

    Article  Google Scholar 

  53. Marchetto, D., Held, C., Hausen, F., Wählisch, F., Dienwiebel, M., and Bennewitz, R., “Friction and Wear on Single-Layer Epitaxial Graphene in Multi-Asperity Contacts,” Tribology Letters, Vol. 48, No. 1, pp. 77–82, 2012.

    Article  Google Scholar 

  54. Berman, D., Erdemir, A., and Sumant, A. V., “Few Layer Graphene to Reduce Wear and Friction on Sliding Steel Surfaces,” Carbon, Vol. 54, pp. 454–459, 2013.

    Article  Google Scholar 

  55. Berman, D., Erdemir, A., and Sumant, A. V., “Reduced Wear and Friction Enabled by Graphene Layers on Sliding Steel Surfaces in Dry Nitrogen,” Carbon, Vol. 59, pp. 167–175, 2013.

    Article  Google Scholar 

  56. Pu, J., Wan, S., Zhao, W., Mo, Y., Zhang, X., and et al., “Preparation and Tribological Study of Functionalized Graphene-IL Nanocomposite Ultrathin Lubrication Films on Si Substrates,” The Journal of Physical Chemistry C, Vol. 115, No. 27, pp. 13275–13284, 2011.

    Article  Google Scholar 

  57. Liang H., Bu Y., Zhang J., Cao Z., and Liang A., “Graphene Oxide Film as Solid Lubricant,” ACS Applied Materials Interfaces, Vol. 5, No. 13, pp. 6369–6375, 2013.

    Article  Google Scholar 

  58. Zhang J., Zhang B., Xue Q., and Wang Z., “Ultra-Elastic Recovery and Low Friction of Amorphous Carbon Films Produced by a Dispersion of Multilayer Graphene,” Diamond Related Materials, Vol. 23, pp. 5–9, 2012.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dae-Eun Kim.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Penkov, O., Kim, HJ., Kim, HJ. et al. Tribology of graphene: A review. Int. J. Precis. Eng. Manuf. 15, 577–585 (2014). https://doi.org/10.1007/s12541-014-0373-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-014-0373-2

Keywords

  • Graphene
  • Tribology
  • Friction
  • Wear