Skip to main content
Log in

Comparative analysis of collagens extracted from different animal sources for application of cartilage tissue engineering

  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

Mammalian collagens have been used as a base material for collagen matrices in tissue engineering applications. However, collagens of aquatic animals and human sources can potentially be utilized as a safe and viable substitute, because collagen products of bovine origin have been shown to be contaminated with some diseases. In the present study, we prepared and investigated collagen materials from several sources (bovine skin, porcine skin, amniotic membrane and starfish) as matrix biomaterials. Detailed investigations on their physicochemical and biological properties, such as amino acid composition, thermal transition temperature, molar mass, IR spectra, and cell response, suggested strong relations between their amino acid composition and intermolecular structure, thermal property, and cell response. Selectively, an amniotic membrane collagen scaffold was evaluated for cartilage tissue engineering in three types of three-dimensional 3D culture (sponge, gel and micro bead forms) and compared with a bovine matrix. Results showed that amniotic membrane collagen has a potential as an alternative source of collagen for use in tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rosso, F., Marino, G., Giordano, A., Barbarisi, M., Parmeggiani, D., and Barbarisi, A., “Smart materials as scaffolds for tissue engineering,” J. Cell Physiol., Vol. 203, pp. 465–470, 2005.

    Article  Google Scholar 

  2. Chevallay, B. and Herbage, D., “Collagen-based biomaterials as 3D scaffold for cell cultures: applications for tissue engineering and gene therapy,” Med. Biol. Eng. Comput., Vol. 38, pp. 211–218, 2000.

    Article  Google Scholar 

  3. Becker, G. D., Adams, L. A., and Hackett, J., “Collagen-assisted healing of facial wounds after Mohs surgery,” Laryngoscope, Vol. 104, pp. 1267–1270, 1994.

    Article  Google Scholar 

  4. Song, E., Kim, S. Y., Chun, T., Byun, H. J., and Lee, Y. M., “Collagen scaffolds derived from a marine source and their biocompatibility,” Biomaterials, Vol. 27, pp. 2951–2961, 2006.

    Article  Google Scholar 

  5. Li, H., Liu, L. Z., and Chen, H. L., “Sudies on bullfrog skin collagen,” Food chemistry, Vol. 84, pp. 65–69, 2004.

    Article  Google Scholar 

  6. Nagai, T., Araki, Y., and Suzuki, N., “Collagen of the skin of ocellate puffer fish,” Food chemistry, Vol. 78, pp. 173–177, 2002.

    Article  Google Scholar 

  7. Jarman-Smith, M. L., Bodamyali, T., Stevens, C., Howell, J. A., Horrocks, M., and Chaudhuri, J. B., “Porcine collagen crosslinking, degradation and its capability for fibroblast adhesion and proliferation,” J. Mater. Sci. Mater. Med., Vol. 15, pp. 925–932, 2004.

    Article  Google Scholar 

  8. Koizumi, N., Inatomi, T., Quantock, A. J., Fullwood, N. J., Dota, A., and Kinoshita, S., “Amniotic membrane as a substrate for cultivating limbal corneal epithelial cells for autologous transplantation in rabbits,” Cornea., Vol. 19, pp. 65–71, 2000.

    Article  Google Scholar 

  9. Shimazaki, J., Yang, H. Y., and Tsubota, K., “Amniotic membrane transplantation for ocular surface reconstruction in patients with chemical and thermal burns,” Ophthalmology, Vol. 104, pp. 2068–2076, 1997.

    Google Scholar 

  10. Jarvis, A. A., Cain, C., and Dennis, E. A., “Purification and characterization of a lysophospholipase from human amnionic membranes,” J. Biol. Chem., Vol. 259, pp. 15188–15195, 1984.

    Google Scholar 

  11. Yunoki, S., Suzuki, T., and Takai, M., “Stabilization of low denaturation temperature collagen from fish by physical crosslinking methods,” J. Biosci. Bioeng., Vol. 96, pp. 575–577, 2003.

    Article  Google Scholar 

  12. Nomura, Y., Yamano, M., Hayakawa, C., Ishii, Y., and Shirai, K., “Structural property and in vitro self-assembly of shark type I collagen,” Biosci. Biotechnol. Biochem., Vol. 61, pp. 1919–1923, 1997.

    Article  Google Scholar 

  13. Nomura, Y. and Kitazume, N., “Use of shark collagen for cell culture and zymography,” Biosci. Biotechnol. Biochem., Vol. 66, pp. 2673–2676, 2002.

    Article  Google Scholar 

  14. Yoshimura, K., Terashima, M., Hozan, D., Ebato, T., Nomura, Y., Ishii, Y., and Shirai, K., “Physical properties of shark gelatin compared with pig gelatin,” J. Agric. Food. Chem., Vol. 48, pp. 2023–2027, 2000.

    Article  Google Scholar 

  15. Nomura, Y., Toki, S., Ishii, Y., and Shirai, K., “Improvement of the material property of shark type I collagen by composing with pig type I collagen,” J. Agric. Food. Chem., Vol. 48, pp. 6332–6336, 2000.

    Article  Google Scholar 

  16. Iwasa, J., Ochi, M., Uchio, Y., Katsube, K., Adachi, N., and Kawasaki, K., “Effects of cell density on proliferation and matrix synthesis of chondrocytes embedded in atelocollagen gel,” Artif. Organs., Vol. 27, pp. 249–255, 2003.

    Article  Google Scholar 

  17. Ochi, M., Uchio, Y., Kawasaki, K., Wakitani, S., and Iwasa, J., “Transplantation of cartilage-like tissue made by tissue engineering in the treatment of cartilage defects of the knee,” J. Bone. Joint. Surg. Br., Vol. 84, pp. 571–578, 2002.

    Article  Google Scholar 

  18. Jongjareonrak, A., Benjakul, S., Visessanguan, W., and Tanaka, M., “Isolation and characterization of collagen from bigeye snapper (Priacanthus macracanthus) skin,” Journal of the Science of Food and Agriculture, Vol. 85, pp. 1203–1210, 2005.

    Article  Google Scholar 

  19. Francis, M. J. and MacMillan, D. C., “Extraction of polymeric collagen from human skin,” Biochem. J., Vol. 122, p. 34, 1971.

    Google Scholar 

  20. Sionkowska, A., “Interaction of collagen and poly(vinyl pyrrolidone) in blends,” European Polymer Journal, Vol. 39, pp. 2135–2140, 2003.

    Article  Google Scholar 

  21. Andrade, A. L., Ferreira, J. M., and Domingues, R. Z., “Zeta potential measurement in bioactive collagen,” Materials Research, Vol. 7, No. 4, pp. 631–634, 2004.

    Article  Google Scholar 

  22. Hadjiiski, A., Dimova, R., Denkov, N. D., Ivanov, I. B., and Borwankar, R., “Film trapping technique: Precise method for threephase contact angle determination of solid and fluid particles of micrometer size,” Langmuir, Vol. 12, No. 26, pp. 6665–6675, 1996.

    Article  Google Scholar 

  23. Park, S. H., Cui, J. H., Park, S. R., and Min, B. H., “Potential of fortified fibrin/hyaluronic acid composite gel as a cell delivery vehicle for chondrocytes,” Artif. Organs., Vol. 33, pp. 439–447, 2009.

    Article  Google Scholar 

  24. Payne, K. J. and Veis, A., “Fourier transform IR spectroscopy of collagen and gelatin solutions: deconvolution of the amide I band for conformational studies,” Biopolymers, Vol. 27, pp. 1749–1760, 1988.

    Article  Google Scholar 

  25. Doyle, B. B., Bendit, E. G., and Blout, E. R., “Infrared spectroscopy of collagen and collagen-like polypeptides,” Biopolymers, Vol. 14, pp. 937–957, 1975.

    Article  Google Scholar 

  26. Angele, P., Abke, J., Kujat, R., Faltermeier, H., Schumann, D., Nerlich, M., Kinner, B., Englert, C., Ruszczak, Z., Mehrl, R., and Mueller, R., “Influence of different collagen species on physicochemical properties of crosslinked collagen matrices,” Biomaterials, Vol. 25, pp. 2831–2841, 2004.

    Article  Google Scholar 

  27. Rehakova, M., Bakos, D., Vizarova, K., Soldan, M., and Jurickova, M., “Properties of collagen and hyaluronic acid composite materials and their modification by chemical crosslinking,” J. Biomed. Mater. Res., Vol. 30, pp. 369–372, 1996.

    Article  Google Scholar 

  28. Olde Damink, L. H., Dijkstra, P. J., van Luyn, M. J., van Wachem, P. B., Nieuwenhuis, P., and Feijen, J., “In vitro degradation of dermal sheep collagen cross-linked using a water-soluble carbodiimide,” Biomaterials, Vol. 17, pp. 679–684, 1996.

    Article  Google Scholar 

  29. Reiser, K., McCormick, R. J., and Rucker, R. B., “Enzymatic and nonenzymatic cross-linking of collagen and elastin,” Faseb. J., Vol. 6, pp. 2439–2449, 1992.

    Google Scholar 

  30. Rosenbloom, J., Harsch, M., and Jimenez, S., “Hydroxyproline content determines the denaturation temperature of chick tendon collagen,” Arch. Biochem. Biophys., Vol. 158, pp. 478–484, 1973.

    Article  Google Scholar 

  31. Bouligand, Y., Denefle, J. P., Lechaire, J. P., and Maillard, M., “Twisted architectures in cell-free assembled collagen gels: study of collagen substrates used for cultures,” Biol. Cell., Vol. 54, pp. 143–162, 1985.

    Article  Google Scholar 

  32. Burjanadze, T. V. and Kisiriya, E. L., “Dependence of thermal stability on the number of hydrogen bonds in water-bridged collagen structure,” Biopolymers, Vol. 21, pp. 1695–1701, 1982.

    Article  Google Scholar 

  33. Capito, R. M. and Spector, M., “Collagen scaffolds for nonviral IGF-1 gene delivery in articular cartilage tissue engineering,” Gene Ther., Vol. 14, No. 9, pp. 721–732, 2007.

    Article  Google Scholar 

  34. Hoben, G. M. and Athanasiou, K. A., “Meniscal repair with fibrocartilage engineering,” Sports. Med. Arthrosc., Vol. 14, pp. 129–137, 2006.

    Article  Google Scholar 

  35. Roche, S., Ronziere, M. C., Herbage, D., and Freyria, A. M., “Native and DPPA cross-linked collagen sponges seeded with fetal bovine epiphyseal chondrocytes used for cartilage tissue engineering,” Biomaterials, Vol. 22, pp. 9–18, 2001.

    Article  Google Scholar 

  36. Katsube, K., Ochi, M., Uchio, Y., Maniwa, S., Matsusaki, M., Tobita, M., and Iwasa, J., “Repair of articular cartilage defects with cultured chondrocytes in Atelocollagen gel. Comparison with cultured chondrocytes in suspension,” Arch. Orthop. Trauma. Surg., Vol. 120, pp. 121–127, 2000.

    Google Scholar 

  37. Ochi, M., Uchio, Y., Tobita, M., and Kuriwaka, M., “Current concepts in tissue engineering technique for repair of cartilage defect,” Artif. Organs., Vol. 25, pp. 172–179, 2001.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byoung-Hyun Min.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, SH., Song, T., Bae, T.S. et al. Comparative analysis of collagens extracted from different animal sources for application of cartilage tissue engineering. Int. J. Precis. Eng. Manuf. 13, 2059–2066 (2012). https://doi.org/10.1007/s12541-012-0271-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-012-0271-4

Keywords

Navigation