Skip to main content
Log in

Effect of Solution and Double-Stage Aging Treatment on the Microstructure and Mechanical Properties of CMT-WAAM Inconel625 Structural Components

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

This study was conducted on the quality control of Inconel625 alloy thin-walled structural components by CMT-WAAM (Cold Metal Transfer Based Wire and Arc Additive Manufacture) process. The solid solution + two-stage aging treatment process was proposed for the heat treatment of thin-walled parts. The effect of solid solution treatment temperature on the microstructure and mechanical properties of thin-walled parts was studied under the same aging treatment conditions. The experimental results show that the deposited microstructure of Inconel625 thin-walled structural parts is mainly columnar dendrites, which grow epitaxially along the deposition direction. The basic microstructure of specimen is γ-Ni solid solution, and many blocky or chain-like Laves phases are distributed in the grains and grain boundaries. After solid solution and two-stage aging treatment, the Laves phase of the specimen dissolves back, δ phase precipitates and significant changes in mechanical properties. With the increase of solution treatment temperature, the Laves phases dissolve gradually, accompanied by δ phases precipitation. As the solid solution treatment temperature increases, the Laves phase gradually dissolves back, accompanied by δ Phase precipitation. When the solid solution treatment temperature rises to 1200 °C, the Laves phase is completely dissolved, δ The phase disappears and the grain size significantly increases. As the solution treatment temperature increases, the microhardness and tensile strength show a trend of first increasing and then decreasing, while the yield strength shows no significant change.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G.P. Dinda, A.K. Dasgupta, J. Mazumder, Mater. Sci. Eng. A 509(1–2), 98–104 (2009). https://doi.org/10.1016/j.msea.2009.01.009

    Article  CAS  Google Scholar 

  2. Y. Chen, M. Xu, T. Zhang et al., J. Alloys Compd. 910, 164957 (2022). https://doi.org/10.1016/j.jallcom.2022.164957

    Article  CAS  Google Scholar 

  3. A. Gamon, E. Arrieta, P.R. Gradl et al., Results Mater. 12, 100239 (2021). https://doi.org/10.1016/j.rinma.2021.100239

    Article  CAS  Google Scholar 

  4. K.D. Ramkumar, W.S. Abraham, V. Viyash et al., J. Manuf. Process. 25, 306–322 (2017). https://doi.org/10.1016/j.jmapro.2016.12.018

    Article  Google Scholar 

  5. J. Huebner, D. Kata, J. Kusiński et al., Ceram. Int. 43(12), 8677–8684 (2017). https://doi.org/10.1016/j.ceramint.2017.03.194

    Article  CAS  Google Scholar 

  6. Z. Wang, K. Guan, M. Gao et al., J. Alloys Compd. 513, 518–523 (2012). https://doi.org/10.1016/j.jallcom.2011.10.107

    Article  CAS  Google Scholar 

  7. P. Maj, M. Koralnik, B. Adamczyk-Cieslak et al., Int. J. Mater. Form. 12(1), 135–144 (2019). https://doi.org/10.1007/s12289-018-1413-8

    Article  Google Scholar 

  8. F. Zhang, Y. Luo, S. Yang et al., Mater. Sci. Eng. A 842, 143054 (2022). https://doi.org/10.1016/j.msea.2022.143054

    Article  CAS  Google Scholar 

  9. M. Karmuhilan, S. Kumanan, J. Mater. Eng. Perform. 31(4), 2583–2592 (2022). https://doi.org/10.1007/s11665-021-06427-3

    Article  CAS  Google Scholar 

  10. A. Chintala, M. Tejaswi Kumar, M. Sathishkumar et al., J. Mater. Eng. Perform. 30(7), 5333–5341 (2021). https://doi.org/10.1007/s11665-021-05781-6

    Article  CAS  Google Scholar 

  11. H. Pant, A. Arora, G.S. Gopakumar et al., Int. J. Adv. Manuf. Technol. 127(11), 4995–5011 (2023). https://doi.org/10.1007/s00170-023-11623-7

    Article  Google Scholar 

  12. X. Xu, S. Ganguly, J. Ding et al., Mater. Des. 160, 1042–1051 (2018). https://doi.org/10.1016/j.matdes.2018.10.038

    Article  CAS  Google Scholar 

  13. Y. Wang, X. Chen, Q. Shen et al., J. Manuf. Process. 64, 10–19 (2021). https://doi.org/10.1016/j.jmapro.2021.01.008

    Article  Google Scholar 

  14. H. Xiao, P. Xie, M. Cheng et al., Addit. Manuf. 34, 101278 (2020). https://doi.org/10.1016/j.addma.2020.101278

    Article  CAS  Google Scholar 

  15. Y.L. Hu, X. Lin, Y.L. Li et al., Mater. Sci. Eng. A Struct. Mater. Propert. Microstruct. Process. 817, 141309 (2021). https://doi.org/10.1016/j.msea.2021.141309

    Article  CAS  Google Scholar 

  16. Q. Ma, H. Chen, N. Ren et al., J. Mater. Eng. Perform. 30(9), 6808–6820 (2021). https://doi.org/10.1007/s11665-021-06023-5

    Article  CAS  Google Scholar 

  17. E.A. Lass, M.R. Stoudt, M.B. Katz et al., Scr. Mater. 154, 83–86 (2018). https://doi.org/10.1016/j.scriptamat.2018.05.025

    Article  CAS  Google Scholar 

  18. M.R. Stoudt, E.A. Lass, D.S. Ng et al., Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 49A(7), 3028–3037 (2018). https://doi.org/10.1007/s11661-018-4643-y

    Article  CAS  Google Scholar 

  19. F. Cortial, J.M. Corrieu, C. Vernot-Loier, Metall. Mater. Trans. A 26(5), 1273–1286 (1995). https://doi.org/10.1007/BF02670621

    Article  Google Scholar 

  20. C.O. Yenusah, Y.Z. Ji, Y.C. Liu et al., Comput. Mater. Sci. 187, 110123 (2021). https://doi.org/10.1016/j.commatsci.2020.110123

    Article  CAS  Google Scholar 

  21. X.P. Zhao, X.J. Di, X. Zhang et al., Mater. Res. Express 8(6), 066529 (2021). https://doi.org/10.1088/2053-1591/ac0b0b

    Article  CAS  Google Scholar 

  22. T.A. Rodrigues, F.W.C. Farias, J.A. Avila et al., Sci. Technol. Weld. Joining 28(7), 534–539 (2023). https://doi.org/10.1080/13621718.2023.2187927

    Article  CAS  Google Scholar 

  23. B.T. Wu, Z.X. Pan, D.H. Ding et al., J. Manuf. Process. 35, 127–139 (2018). https://doi.org/10.1016/j.jmapro.2018.08.001

    Article  Google Scholar 

  24. C.L.A. Leung, D. Luczyniec, E.Y. Guo et al., Adv. Sci. 9(36), 3546 (2022). https://doi.org/10.1002/advs.202203546

    Article  Google Scholar 

  25. V.P. Kumar, A.V. Jebaraj, Trans. Indian Inst. Met. 74(12), 3103–3117 (2021). https://doi.org/10.1007/s12666-021-02374-8

    Article  CAS  Google Scholar 

  26. Q. Wang, P. Michaleris, Y. Ren et al., Addit. Manuf. Lett. 7, 100169 (2023). https://doi.org/10.1016/j.addlet.2023.100169

    Article  Google Scholar 

  27. J.S. Zuback, T. DebRoy, Materials 11(11), 2070 (2018). https://doi.org/10.3390/ma11112070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. S. Ghaemifar, H. Mirzadeh, J. Mater. Res. Technol. 24, 3491–3501 (2023). https://doi.org/10.1016/j.jmrt.2023.04.013

    Article  CAS  Google Scholar 

  29. A. Safarzade, M. Sharifitabar, M. Shafiee Afarani, Trans. Nonferr. Met. Soc. China 30(11), 3016–3030 (2020). https://doi.org/10.1016/S1003-6326(20)65439-5

    Article  CAS  Google Scholar 

  30. G. Sanyal, A. Das, J.B. Singh et al., Mater. Sci. Eng. A 641, 210–214 (2015). https://doi.org/10.1016/j.msea.2015.06.044

    Article  CAS  Google Scholar 

  31. K. Devendranath Ramkumar, P.S. Goutham Kumar, V. Sai Radhakrishna et al., J. Mater. Res. 30(21), 3288–3298 (2015). https://doi.org/10.1557/jmr.2015.276

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by The National Natural Science Foundation of China (51975410); the Tianjin "project + team" key training project (XC202053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianqi Wang.

Ethics declarations

Competing interests

No conflict of interest exists in the submission of this manuscript, and the manuscript is approved by all authors for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Tang, J., Guo, D. et al. Effect of Solution and Double-Stage Aging Treatment on the Microstructure and Mechanical Properties of CMT-WAAM Inconel625 Structural Components. Met. Mater. Int. (2024). https://doi.org/10.1007/s12540-024-01686-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12540-024-01686-w

Keywords

Navigation