Skip to main content
Log in

Intrinsic Wetting of TC4 by Ag, AgCu and AgCuTi Alloys

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Intrinsic wetting behaviors of Ag, AgCu and AgCuTi on TC4 were studied by ISD and MSD method. A linear spreading was found in Ag/TC4 system with a rate of ~ 0.14 mm/s. No significant difference in wetting behavior between AgCu/TC4 and AgCuTi/TC4, which can be divided into three stages. The first stage is controlled by the dissolution process at the solid/liquid interface, and the second and third stages are characterized by near linear and linear spreading. The corresponding spreading rates are ~ 0.017 mm/s and ~ 0.004 mm/s, which may be controlled by the solid solution reactions of Cu and TC4 and Ag and TC4, respectively.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to technical limitations.

References

  1. S. Zhu, K. Xie, Q. Lin, R. Cao, F. Qiu, Experimental determination of surface energy for high-energy surface: a review. Adv. Colloid Interface Sci. 315, 102905 (2023)

    Article  CAS  PubMed  Google Scholar 

  2. Q. Qin, Z. Zhang, L. Yang, J. Li, Non-reciprocal heterogeneous nucleation in solidification of Ag–Cu alloys. Met. Mater. Int. 30, 1270–1281 (2024)

  3. P. Protsenko, A. Terlain, V. Traskine, N. Eustathopoulos, The role of intermetallics in wetting in metallic systems. Scr. Mater. 45(12), 1439–1445 (2001)

    Article  CAS  Google Scholar 

  4. A. Koochaki-Abkenar, A. Malekan, M. Bozorg, K. Nematipour, Hot corrosion and oxidation behavior of Pt–aluminide and Pt–Rh–aluminide coatings applied on nickle-base and cobalt-base substrates. Met. Mater. Int. (2024). https://doi.org/10.1007/s12540-024-01653-5

  5. R. Sui, F. Li, W. Ci, Q. Lin, Wetting of Cu and Cu–Sn IMCs by Sn–Bi alloys over wide composition at 350 °C. J. Electron. Mater. 48(7), 4660–4668 (2019)

    Article  CAS  Google Scholar 

  6. A. Be’er, Y. Lereah, H. Taitelbaum, Reactive wetting of Hg–Ag system at room temperature. Mater. Sci. Eng. A 495(1–2), 102–107 (2008)

    Article  Google Scholar 

  7. N. Eustathopoulos, R. Voytovych, The role of reactivity in wetting by liquid metals: a review. J. Mater. Sci. 51(1), 425–437 (2015)

    Article  Google Scholar 

  8. N. Eustathopoulos, M.G. Nicholas, B. Drevet, Wettability at High Temperatures (Elsevier, Oxford, 1999)

    Google Scholar 

  9. Z. Ma, Q. Lin, Comment on “Wetting of liquid copper on TC4 titanium alloy and 304 stainless-steel at 1273–1433K” Materials & Design 169 (2019) 107667. Mater. Des. 235, 112404 (2023)

    Article  Google Scholar 

  10. X. Yu, J. Yang, M. Yan, X.-W. Hu, Y.L. Li, Kinetics of wetting and spreading of AgCu filler metal over Ti–6Al–4V substrates. J. Mater. Sci. 51, 10960–10969 (2016)

    Article  CAS  Google Scholar 

  11. G. Liu, Y. Li, W. Long, X. Hu, J. Cao, M. Yan, Wetting kinetics and spreading phenomena of the precursor film and bulk liquid in the AgCuTi/TC4 system. J. Alloys Compd. 802, 345–354 (2019)

    Article  CAS  Google Scholar 

  12. L. Hao, J. Liu, Y. Li, Wetting and spreading of AgCuTi on selective laser-melted Ti–6Al–4V. Materials 14(17), 4804 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. N. Sobczak, J. Sobczak, R. Asthana, R. Purgert, The mystery of molten metal. China Foundry 7(4), 425–437 (2010)

    CAS  Google Scholar 

  14. P. Shen, H. Fujii, T. Matsumoto, K. Nogi, Critical factors affecting the wettability of a-alumina by molten aluminum. J. Am. Ceram. Soc. 87(11), 2151 (2004)

    Article  Google Scholar 

  15. T.B. Massalski, Binary Phase Diagram (CD-ROM). ASM International (1996)

  16. A.P. Xian, Precursor film of tin-based active solder wetting on ceramics. J. Mater. Sci. 28(4), 1019–1030 (1993)

    Article  CAS  Google Scholar 

  17. J.A. Warren, W.J. Boettinger, A.R. Roosen, Modeling reactive wetting. Acta Mater. 46(9), 3247–3264 (1998)

    Article  CAS  Google Scholar 

  18. L. Yin, B.T. Murray, T.J. Singler, Dissolutive wetting in the Bi-Sn system. Acta Mater. 54(13), 3561–3574 (2006)

    Article  CAS  Google Scholar 

  19. P. Protsenko, O. Kozlova, R. Voytovych, N. Eustathopoulos, Dissolutive wetting of Si by molten Cu. J. Mater. Sci. 43(16), 5669–5671 (2008)

    Article  CAS  Google Scholar 

  20. W.F. Gale, T.C. Totemeier, Smithells Metals Reference Book (Elsevier, Amsterdam, 2003)

    Google Scholar 

  21. P.R. Sharps, A.P. Tomsia, J.A. Pask, Wetting and spreading in the Cu–Ag system. Acta Metall. 29(5), 855–865 (1981)

    Article  CAS  Google Scholar 

  22. I. Barin, Thermochemical Data of Pure Substances, 3rd edn. (Wiley, Weinheim, 1995)

    Book  Google Scholar 

  23. O. Yong-Taeg, S. Fujino, K. Morinaga, Fabrication of transparent silica glass by powder sintering. Sci. Technol. Adv. Mater. 3(4), 297–301 (2002)

    Article  CAS  Google Scholar 

  24. H. Zhuang, E. Lugscheider, High Temperature Brazing (National Defense Industry Press, Beijing, 1989)

    Google Scholar 

  25. N.A. Gokcen, Statistical Thermodynamics of Alloys (Springer, New York, 2012)

    Google Scholar 

  26. A.R. Miedema, F.R. de Boer, R. Boom, Model predictions for the enthalpy of formation of transition metal alloys. Calphad – Comput. Coupling Phase Diagr. Thermochem. 1(4), 341–359 (1977)

    Article  CAS  Google Scholar 

  27. L. Yin, A. Chauhan, T.J. Singler, Reactive wetting in metal/metal systems: dissolutive versus compound-forming systems. Mater. Sci. Eng. A 495(1–2), 80–89 (2008)

    Article  Google Scholar 

  28. J. Wolfenstine, U. Lee, B. Poese, J.L. Allen, Effect of oxygen partial pressure on the discharge capacity of LiCoPO4. J. Power. Sources 144(1), 226–230 (2005)

    Article  CAS  Google Scholar 

  29. Q. Lin, L. Liu, W. Zhu, Formation mechanism of precursor films at high temperatures: a review. Chin. J. Mech. Eng. 35(1), 21 (2022)

    Article  Google Scholar 

  30. W.D. Bascom, R.L. Cottington, C.R. Singleterry, Dynamic Surface Phenomena in the Spontaneous Spreading of Oils on Solids (ACS Publications, Washington, D.C., 1964)

    Book  Google Scholar 

  31. B.W. Cherry, Kinetics of wetting of surfaces by polymers. J. Colloid Interface Sci. 29, 174–176 (1969)

    Article  CAS  Google Scholar 

  32. T.D. Blake, J.M. Haynes, Kinetics of liquidliquid displacement. J. Colloid Interface Sci. 30(3), 421–423 (1969)

    Article  CAS  Google Scholar 

  33. E. Ruckenstein, C.S. Dunn, Slip velocity during wetting of solids. J. Colloid Interface Sci. 59(1), 135–138 (1977)

    Article  CAS  Google Scholar 

  34. W.B. Hardy III., The spreading of fluids on glass. Lond. Edinb. Dublin Philos. Mag. J. Sci. 38(223), 49–55 (1919)

    Article  CAS  Google Scholar 

  35. S.I. Tanaka, C. Iwamoto, Nanoscale dynamic wetting and spreading of molten Ti alloy on 6H–SiC. Mater. Sci. Eng. A 495(1–2), 168–173 (2008)

    Article  Google Scholar 

  36. C. Iwamoto, S.I. Tanaka, Atomic morphology and chemical reactions of the reactive wetting front. Acta Mater. 50(4), 749–755 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (No. 52165044).

Author information

Authors and Affiliations

Authors

Contributions

Kaibin Xie: Methodology, Writing, Ran Sui: Writing—review and editing, Zixu Zuo: Methodology, Qiaoli Lin: Writing—review and editing, Resources, Funding acquisitions.

Corresponding authors

Correspondence to Ran Sui or Qiaoli Lin.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, K., Sui, R., Zuo, Z. et al. Intrinsic Wetting of TC4 by Ag, AgCu and AgCuTi Alloys. Met. Mater. Int. (2024). https://doi.org/10.1007/s12540-024-01685-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12540-024-01685-x

Keywords

Navigation