Skip to main content
Log in

Enhanced Interfacial Joining Strength of Mg/Ti Bimetal Casting via 3D-Printed Ti-Based Lattice Material

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

This study innovatively joins magnesium and titanium alloys by incorporating a 3D-printed lattice structure into a magnesium alloy melt via compound casting. Simulation results highlight the significant effect of the length-to-diameter ratio (l/ds) and node-to-strut diameter ratio (dn/ds) on joint strength, with the inclination angle (ω) deemed negligible. X-ray microcomputed tomography reveals a minimal 0.048% porosity in the bimetal joint with a cell dimension of 9 mm, prepared at a casting temperature of 730 °C. Experimental validation affirms the optimized lattice structure yielding impressive Mg/Ti composite joining strength (95.4 MPa) and fracture energy (8987 J). This optimal structure with l/ds, dn/ds, and ω of 5.8, 2.4, and 56° respectively, leverages rough surface texture from selective laser melting, promoting a serrated interface for enhanced Mg/Ti bimetallic bonding.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author, [author initials], upon reasonable request.

References

  1. L. Raimondi, L. Tomesani, L. Donati, A. Zucchelli, Lattice material infiltration for hybrid metal-composite joints: manufacturing and static strength. Compos. Struct. 269, 114069 (2021). https://doi.org/10.1016/j.compstruct.2021.114069

    Article  CAS  Google Scholar 

  2. F. Hua, H. Song, T. Sun, J. Li, Inter-diffusion based analytical model for growth kinetics of IMC layers at roll bonded Cu/Al interface during annealing process. Met. Mater. Int. 26, 333–345 (2020). https://doi.org/10.1007/s12540-019-00333-z

    Article  CAS  Google Scholar 

  3. X. Cheng, Y. Gao, H. Fu, J. Xing, B. Bai, Microstructural characterization and properties of Al/Cu/steel diffusion bonded joints. Met. Mater. Int. 16, 649–655 (2010). https://doi.org/10.1007/s12540-010-0820-2

    Article  CAS  Google Scholar 

  4. J.L. Song, S.B. Lin, C.L. Yang, C.L. Fan, Effects of Si additions on intermetallic compound layer of aluminum–steel TIG welding–brazing joint. J. Alloys Compd. 488, 217–222 (2009). https://doi.org/10.1016/j.jallcom.2009.08.084

    Article  CAS  Google Scholar 

  5. G. Chen, G. Xu, Interfacial reaction in twin-roll cast AA1100/409L clad sheet during different sequence of cold rolling and annealing. Met. Mater. Int. 27, 3013–3025 (2021). https://doi.org/10.1007/s12540-020-00621-z

    Article  CAS  Google Scholar 

  6. G. Li, W. Jiang, F. Guan, Z. Zhang, J. Wang, Y. Yu, Z. Fan, Preparation, interfacial regulation and strengthening of Mg/Al bimetal fabricated by compound casting: a review. J. Magnes. Alloy. 11, 3059–3098 (2023). https://doi.org/10.1016/j.jma.2023.09.001

    Article  CAS  Google Scholar 

  7. G. Li, W. Jiang, F. Guan, J. Zhu, Y. Yu, Z. Fan, Microstructure evolution, mechanical properties and fracture behavior of Al-xSi/AZ91D bimetallic composites prepared by a compound casting. J. Magnes. Alloy. (2022). https://doi.org/10.1016/j.jma.2022.08.010

    Article  Google Scholar 

  8. S. Fan, W. Jiang, G. Li, J. Mo, Z. Fan, Fabrication and microstructure evolution of Al/Mg bimetal using a near-net forming process. Mater. Manuf. Processes 32, 1391–1397 (2017). https://doi.org/10.1080/10426914.2017.1328118

    Article  CAS  Google Scholar 

  9. F.J. Yao, G.Q. You, L. Wang, Q. Li, S. Zeng, Y. Ming, Design, fabrication, microstructure, and mechanical properties of interlayer-free vacuum diffusion bonding Mg/Ti composites. Vacuum 199, 110947 (2022). https://doi.org/10.1016/j.vacuum.2022.110947

    Article  ADS  CAS  Google Scholar 

  10. C.W. Tan, X.G. Song, B. Chen, L.Q. Li, J.C. Feng, Enhanced interfacial reaction and mechanical properties of laser welded-brazed Mg/Ti joints with Al element from filler. Mater. Lett. 167, 38–42 (2016). https://doi.org/10.1016/j.matlet.2015.12.119

    Article  CAS  Google Scholar 

  11. C.W. Tan, B. Chen, S.H. Meng, K.P. Zhang, X.G. Song, L. Zhou, J.C. Feng, Microstructure and mechanical properties of laser welded-brazed Mg/Ti joints with AZ91 Mg based filler. Mater. Des. 99, 127–134 (2016). https://doi.org/10.1016/j.matdes.2016.03.073

    Article  CAS  Google Scholar 

  12. J.J. Shangguan, J.H. Zhao, Y. Shi, C. Gu, B.Y. Jin, J. Cheng, Y. Guo, Effects of Zn interlayer on microstructures and mechanical properties of TC4/AZ91D bimetal via solid-liquid compound casting process. Int. J. Metalcast. 16, 419–434 (2022). https://doi.org/10.1007/s40962-021-00612-9

    Article  CAS  Google Scholar 

  13. F.L. Wen, J.H. Zhao, M.W. Yuan, J.F. Wang, D.Z. Zheng, J.Y. Zhang, K. He, J.J. Shangguan, Y. Guo, Influence of Ni interlayer on interfacial microstructure and mechanical properties of Ti-6Al-4V/AZ91D bimetals fabricated by a solid–liquid compound casting process. J. Magnesium Alloys 9, 1382–1395 (2021). https://doi.org/10.1016/j.jma.2020.05.021

    Article  CAS  Google Scholar 

  14. F. Wen, J. Zhao, K. Feng, M. Yuan, D. Zheng, C. Gu, B. Xu, Investigation of Cu interlayer on joint formation of Ti/Mg bimetal fabricated by liquid-solid compound casting process. Met. Mater. Int. 28, 1711–1724 (2022). https://doi.org/10.1007/s12540-021-01027-1

    Article  CAS  Google Scholar 

  15. W. Jiang, H. Jiang, G. Li, F. Guan, J. Zhu, Z. Fan, Microstructure, mechanical properties and fracture behavior of magnesium/steel bimetal using compound casting assisted with hot-dip aluminizing. Met. Mater. Int. 27, 2977–2988 (2021). https://doi.org/10.1007/s12540-019-00606-7

    Article  CAS  Google Scholar 

  16. J. Cheng, J. Zhao, D. Zheng, K. He, Y. Guo, Effect of the vacuum heat treatment on the microstructure and mechanical properties of the galvanized-Q235/AZ91D bimetal material produced by solid-liquid compound casting. Met. Mater. Int. 27, 545–555 (2021). https://doi.org/10.1007/s12540-019-00503-z

    Article  CAS  Google Scholar 

  17. B. Onuike, A. Bandyopadhyay, Functional bimetallic joints of Ti6Al4V to SS410. Addit. Manuf. 31, 100931 (2020). https://doi.org/10.1016/j.addma.2019.100931

    Article  CAS  PubMed  Google Scholar 

  18. A.M. Atieh, T.I. Khan, TLP bonding of Ti-6Al-4V and Mg-AZ31 alloys using pure Ni electro-deposited coats. J. Mater. Process. Technol. 214, 3158–3168 (2014). https://doi.org/10.1016/j.jmatprotec.2014.07.028

    Article  CAS  Google Scholar 

  19. Z.Q. Zhang, C.W. Tan, G. Wang, B. Chen, X.G. Song, H.Y. Zhao, L.Q. Li, J.C. Feng, Laser welding-brazing of immiscible AZ31B Mg and Ti-6Al-4V alloys using an electrodeposited Cu interlayer. J. Mater. Eng. Perform. 27, 1414–1426 (2018). https://doi.org/10.1007/s11665-018-3196-y

    Article  CAS  Google Scholar 

  20. J.J. Shangguan, J.H. Zhao, J.X. Zhang, C. Gu, Y. Shi, Y.J. Wang, Improving shear strength of Ti/Mg bimetal composites prepared by hot-dip aluminizing and solid–liquid compound casting. Adv. Eng. Mater. 24, 2200298 (2022). https://doi.org/10.1002/adem.202200298

    Article  CAS  Google Scholar 

  21. A. AlHazaa, I. Alhoweml, M.A. Shar, M. Hezam, H.S. Abdo, H. AlBrithen, Transient liquid phase bonding of Ti-6Al-4V and Mg-AZ31 alloys using Zn coatings. Materials 12, 769 (2019). https://doi.org/10.3390/ma12050769

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Z. Zhang, W. Jiang, G. Li, J. Wang, F. Guan, G. Jie, Z. Fan, Effect of La on microstructure, mechanical properties and fracture behavior of Al/Mg bimetallic interface manufactured by compound casting. J. Mater. Sci. Technol. 105, 214–225 (2022). https://doi.org/10.1016/j.jmst.2021.08.011

    Article  CAS  Google Scholar 

  23. F. Wen, J. Zhao, M. Yuan, J. Wang, D. Zheng, J. Zhang, K. He, J. Shangguan, Y. Guo, Influence of Ni interlayer on interfacial microstructure and mechanical properties of Ti-6Al-4V/AZ91D bimetals fabricated by a solid–liquid compound casting process. J. Magnes. Alloy 9, 1382–1395 (2021). https://doi.org/10.1016/j.jma.2020.05.021

    Article  CAS  Google Scholar 

  24. M. Gao, Z.M. Wang, X.Y. Li, X.Y. Zeng, Laser keyhole welding of dissimilar Ti-6Al-4V titanium alloy to AZ31B magnesium alloy. Metall. Mater. Trans. A 43, 163–172 (2012). https://doi.org/10.1007/s11661-011-0825-6

    Article  CAS  Google Scholar 

  25. T. Bagnato, A.R. Ravindran, A. Mirabedini, R.B. Ladani, E. Kandare, A.C. Orifici, P. Chang, J. Wang, A.P. Mouritz, Superior interfacial toughening of hybrid metal-composite structural joints using 3D printed pins. Compos. A: Appl. Sci. Manuf. 168, 107479 (2023). https://doi.org/10.1016/j.compositesa.2023.107479

    Article  CAS  Google Scholar 

  26. N. Li, P.H. Chen, X.Y. Liu, W. Ma, X.C. Wang, A micro-macro finite element model for failure prediction of ComeldTM joints. Compos. Sci. Technol. 117, 334–341 (2015). https://doi.org/10.1016/j.compscitech.2015.07.001

    Article  Google Scholar 

  27. W. Xiong, B. Blackman, J.P. Dear, X. Wang, The effect of composite orientation on the mechanical properties of hybrid joints strengthened by surfi-sculpt. Compos. Struct. 134, 587–592 (2015). https://doi.org/10.1016/j.compstruct.2015.08.083

    Article  Google Scholar 

  28. S. Ucsnik, M. Scheerer, S. Zaremba, D.H. Pahr, Experimental investigation of a novel hybrid metal–composite joining technology. Compos. A: Appl. Sci. Manuf. 41, 369–374 (2010). https://doi.org/10.1016/j.compositesa.2009.11.003

    Article  CAS  Google Scholar 

  29. S. Heimbs, A.C. Nogueira, E. Hombergsmeier, M. May, J. Wolfrum, Failure behaviour of composite T-joints with novel metallic arrow-pin reinforcement. Compos. Struct. 110, 16–28 (2014). https://doi.org/10.1016/j.compstruct.2013.11.022

    Article  Google Scholar 

  30. M. Grasso, B.M. Colosimo, Process defects and in situ monitoring methods in metal powder bed fusion: a review. Meas. Sci. Technol. 28, 044005 (2017). https://doi.org/10.1088/1361-6501/aa5c4f

    Article  ADS  CAS  Google Scholar 

  31. A.T.T. Nguyen, M. Brandt, S. Feih, A.C. Orifici, Pin pull-out behaviour for hybrid metal-composite joints with integrated reinforcements. Compos. Struct. 155, 160–172 (2016). https://doi.org/10.1016/j.compstruct.2016.07.047

    Article  Google Scholar 

  32. A.T.T. Nguyen, C.K. Amarasinghe, M. Brandt, S. Feih, A.C. Orifici, Loading, support and geometry effects for pin-reinforced hybrid metal-composite joints. Compos. A: Appl. Sci. Manuf. 98, 192–206 (2017). https://doi.org/10.1016/j.compositesa.2017.03.019

    Article  CAS  Google Scholar 

  33. A.T.T. Nguyen, N. Pichitdej, M. Brandt, S. Feih, A.C. Orifici, Failure modelling and characterisation for pin-reinforced metal-composite joints. Compos. Struct. 188, 185–196 (2018). https://doi.org/10.1016/j.compstruct.2017.12.043

    Article  Google Scholar 

  34. T. Maconachie, M. Leary, B. Lozanovski, X. Zhang, M. Qian, O. Faruque, M. Brandt, SLM lattice structures: properties, performance, applications and challenges. Mater. Des. 183, 108137 (2019). https://doi.org/10.1016/j.matdes.2019.108137

    Article  Google Scholar 

  35. H. Lei, C. Li, J. Meng, H. Zhou, Y. Liu, X. Zhang, P. Wang, D. Fang, Evaluation of compressive properties of SLM-fabricated multi-layer lattice structures by experimental test and μ-CT-based finite element analysis. Mater. Des. 169, 107685 (2019). https://doi.org/10.1016/j.matdes.2019.107685

    Article  CAS  Google Scholar 

  36. S. McKown, Y. Shen, W.K. Brookes, C.J. Sutcliffe, W.J. Cantwell, G.S. Langdon, G.N. Nurick, M.D. Theobald, The quasi-static and blast loading response of lattice structures. Int. J. Impact Eng 35, 795–810 (2008). https://doi.org/10.1016/j.ijimpeng.2007.10.005

    Article  Google Scholar 

  37. M. Mazur, M. Leary, S. Sun, M. Vcelka, D. Shidid, M. Brandt, Deformation and failure behaviour of Ti-6Al-4V lattice structures manufactured by selective laser melting (SLM). Int. J. Adv. Manuf. Technol. 84, 1391–1411 (2016). https://doi.org/10.1007/s00170-015-7655-4

    Article  Google Scholar 

  38. A. Alghamdi, T. Maconachie, D. Downing, M. Brandt, M. Qian, M. Leary, Effect of additive manufactured lattice defects on mechanical properties: an automated method for the enhancement of lattice geometry. Int. J. Adv. Manuf. Technol. 108, 957–971 (2020). https://doi.org/10.1007/s00170-020-05394-8

    Article  Google Scholar 

  39. T. Hasegawa, K. Okazaki, Analysis of strain rate dependence of tensile elongation for a mechanical milling Al–1.1Mg–1.2Cu alloy tested at 748 K from a dislocation dynamics viewpoint. Mater. Sci. Eng. A 260, 294–300 (1999). https://doi.org/10.1016/S0921-5093(98)00961-7

    Article  Google Scholar 

  40. F. Zhao, Y.L. Li, T. Suo, W.D. Huang, J.R. Liu, Compressive deformation behavior of AZ31 magnesium alloy under quasi-static and dynamic loading. Trans. Nonferr. Metal. Soc. China 20, 1316–1320 (2010). https://doi.org/10.1016/S1003-6326(09)60297-1

    Article  CAS  Google Scholar 

  41. N. Tahreen, D.L. Chen, M. Nouri, D.Y. Li, Effects of aluminum content and strain rate on strain hardening behavior of cast magnesium alloys during compression. Mater. Sci. Eng. A 594, 235–245 (2014). https://doi.org/10.1016/j.msea.2013.11.078

    Article  CAS  Google Scholar 

  42. Y. Liu, J.H. Meng, L. Zhu, H.Y. Chen, Z.G. Li, S.X. Li, D. Wang, Y.G. Wang, K. Kosiba, Dynamic compressive properties and underlying failure mechanisms of selective laser melted Ti-6Al-4V alloy under high temperature and strain rate conditions. Addit. Manuf. 54, 102772 (2022). https://doi.org/10.1016/j.addma.2022.102772

    Article  CAS  Google Scholar 

  43. I.R. Ahmad, D.W. Shu, Tensile properties of die-cast magnesium alloy AZ91D at high strain rates in the range between 300 s(-1) and 1500 s(-1). Appl. Mech. Mater. VII 24, 325–330 (2010). https://doi.org/10.4028/www.scientific.net/AMM.24-25.325

    Article  ADS  CAS  Google Scholar 

  44. Y. Shimizu, S. Miki, T. Soga, I. Itoh, H. Todoroki, T. Hosono, K. Sakaki, T. Hayashi, Y.A. Kim, M. Endo, S. Morimoto, A. Koide, Multi-walled carbon nanotube-reinforced magnesium alloy composites. Scr. Mater. 58, 267–270 (2008). https://doi.org/10.1016/j.scriptamat.2007.10.014

    Article  CAS  Google Scholar 

  45. X. Yang, W. Ma, Z. Zhang, S. Liu, H. Tang, Ultra-high specific strength Ti6Al4V alloy lattice material manufactured via selective laser melting. Mater. Sci. Eng. A 840, 142956 (2022). https://doi.org/10.1016/j.msea.2022.142956

    Article  CAS  Google Scholar 

  46. Q.X. Feng, Q. Tang, Y. Liu, R. Setchi, S. Soe, S. Ma, L. Bai, Quasi-static analysis of mechanical properties of Ti6Al4V lattice structures manufactured using selective laser melting. Int. J. Adv. Manuf. Technol. 94, 2301–2313 (2018). https://doi.org/10.1007/s00170-017-0932-7

    Article  Google Scholar 

  47. A. Santos, E. Córdoba, Z. Ramírez, C. Sierra, Y. Ortega, Determination of the coefficient of dynamic friction between coatings of alumina and metallic materials. in Journal of Physics: Conference Series 935, 012042 (2017). https://doi.org/10.1088/1742-6596/935/1/012042

  48. SIMULIA, Abaqus/CAE 6.14 User’s Manual, (Dassault Systémes Inc, Provid. RI, USA, 2014), pp. 1–1146. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089823156&partnerID=40&md5=a05a511616dc358e75723ebf30084b49

  49. T.E.D. Belytschko, The finite element method: linear static and dynamic finite element analysis—Thomas J. R. Hughes. Comput. Aided Civ. Infrastruct. Eng. 4, 245–246 (1989). https://doi.org/10.1111/j.1467-8667.1989.tb00025.x

    Article  Google Scholar 

  50. Y. Huang, Y. Xue, X. Wang, F. Han, Mechanical behavior of three-dimensional pyramidal aluminum lattice materials. Mater. Sci. Eng. A 696, 520–528 (2017). https://doi.org/10.1016/j.msea.2017.04.053

    Article  CAS  Google Scholar 

  51. R. Guo, L. Liu, Preparation and experimental study on anti-penetration capability of the interlocking lattice sandwich plate filled with ceramic rods and hybrid fillers. J. Sandwich Struct. Mater. 20, 153–168 (2018). https://doi.org/10.1177/1099636216643426

    Article  ADS  Google Scholar 

  52. R. Gümrük, R.A.W. Mines, Compressive behaviour of stainless steel micro-lattice structures. Int. J. Mech. Sci. 68, 125–139 (2013). https://doi.org/10.1016/j.ijmecsci.2013.01.006

    Article  Google Scholar 

  53. K. Ushijima, W.J. Cantwell, R.A.W. Mines, S. Tsopanos, M. Smith, An investigation into the compressive properties of stainless steel micro-lattice structures. J. Sandwich Struct. Mater. 13, 303–329 (2010). https://doi.org/10.1177/1099636210380997

    Article  CAS  Google Scholar 

  54. M. Simonelli, Y.Y. Tse, C. Tuck, Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti–6Al–4V. Mater. Sci. Eng. A 616, 1–11 (2014). https://doi.org/10.1016/j.msea.2014.07.086

    Article  CAS  Google Scholar 

  55. J. Schukraft, D. Horny, K. Schulz, K.A. Weidenmann, 3D modeling and experimental investigation on the damage behavior of an interpenetrating metal ceramic composite (IMCC) under compression. Mater. Sci. Eng. A 844, 143147 (2022). https://doi.org/10.1016/j.msea.2022.143147

    Article  CAS  Google Scholar 

  56. M. Balasubramanian, Application of Box–Behnken design for fabrication of titanium alloy and 304 stainless steel joints with silver interlayer by diffusion bonding. Mater. Des. 77, 161–169 (2015). https://doi.org/10.1016/j.matdes.2015.04.003

    Article  CAS  Google Scholar 

  57. K. Yetilmezsoy, A. Saral, Stochastic modeling approaches based on neural network and linear–nonlinear regression techniques for the determination of single droplet collection efficiency of countercurrent spray towers. Environ. Model. Assess. 12, 13–26 (2007). https://doi.org/10.1007/s10666-006-9048-4

    Article  Google Scholar 

  58. Q. Zhao, Z.B. Shao, Q.C. Leng, X.D. Zhang, C.J. Liu, B.K. Li, M.F. Jiang, Preparation of Cu-Cr alloy powder by heat mechanical alloying and Box–Behnken design based optimization. Powder Technol. 321, 326–335 (2017). https://doi.org/10.1016/j.powtec.2017.08.039

    Article  CAS  Google Scholar 

  59. R.K. Tayal, S. Kumar, V. Singh, R. Garg, Characterization and microhardness evaluation of A356/Mg joint produced by vacuum-assisted sand mold compound casting process. Int. J. Metalcast. 13, 392–406 (2019). https://doi.org/10.1007/s40962-018-0264-x

    Article  CAS  Google Scholar 

  60. A. Balasundaram, A.M. Gokhale, Quantitative characterization of spatial arrangement of shrinkage and gas (air) pores in cast magnesium alloys. Mater Charact 46, 419–426 (2001). https://doi.org/10.1016/S1044-5803(01)00141-3

    Article  CAS  Google Scholar 

  61. D.L. Prakash, B. Prasanna, D. Regener, Computational microstructure analyzing technique for quantitative characterization of shrinkage and gas pores in pressure die cast AZ91 magnesium alloys. Comput. Mater. Sci. 32, 480–488 (2005). https://doi.org/10.1016/j.commatsci.2004.09.017

    Article  CAS  Google Scholar 

  62. Y. Li, H. Yang, X. Lin, W. Huang, J. Li, Y. Zhou, The influences of processing parameters on forming characterizations during laser rapid forming. Mater. Sci. Eng. A 360, 18–25 (2003). https://doi.org/10.1016/S0921-5093(03)00435-0

    Article  CAS  Google Scholar 

  63. J.J. Ding, Q.W. Qin, S.M. Hao, X.T. Wang, G.L. Chen, Partial phase diagram of the Ti-Al binary system. J. Phase Equilib. 17, 117–120 (1996). https://doi.org/10.1007/BF02665786

    Article  CAS  Google Scholar 

  64. H. Zhang, Y. Chen, A.A. Luo, A novel aluminum surface treatment for improved bonding in magnesium/aluminum bimetallic castings. Scr. Mater. 86, 52–55 (2014). https://doi.org/10.1016/j.scriptamat.2014.05.007

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51875062 and 52205336), and China Postdoctoral Science Foundation (2021M700567).

Funding

National Natural Science Foundation of China, 51875062, Jian-hua Zhao, 52205336, Cheng Gu, China Postdoctoral Science Foundation, 2021M700567, Cheng Gu

Author information

Authors and Affiliations

Authors

Contributions

YW: conceptualization, methodology, writing—original draft. JZ: formal analysis, funding acquisition, supervision. CG: review & editing, data curation. LY: investigation, data curation.

Corresponding author

Correspondence to Jianhua Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3315 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Zhao, J., Yu, L. et al. Enhanced Interfacial Joining Strength of Mg/Ti Bimetal Casting via 3D-Printed Ti-Based Lattice Material. Met. Mater. Int. (2024). https://doi.org/10.1007/s12540-024-01640-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12540-024-01640-w

Keywords

Navigation