Skip to main content
Log in

Utilization of Hot Deformation to Trigger Strain-Induced Boundary Migration, Particle-Stimulated Nucleation, and Influence of Nano-Precipitates on Mechanical Properties in High-Alloyed Al–Zn–Mg–Cu Alloys

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The second phases, nano-sized precipitates, and mechanical properties of high-alloyed Al–2.9 Mg–10.8Zn–7.55Cu and Al–3.56 Mg–7.69Zn–10.25Cu aluminum (Al) alloys were analyzed using SEM, XRD, DSC, EBSD, TEM, and tensile tests. The second phases of as-cast Z1 and Z2 alloy were mainly Al2Cu and Al2MgCu. After hot deformation, the phases at grain boundary in Z1HR and Z2HR were mainly Al2Cu, Al2MgCu and Mg2Al5Cu6. The nano-precipitates within grain are Al2Cu, Al2MgCu and Mg2Al5Cu6 whose nano-precipitates are different from that in traditional Al alloy and there is a coarsening process of nano-precipitates. The recrystallization nucleation mechanisms of Z1HR and Z2HR Al alloys during hot deformation were strain-induced boundary migration (SIBM) and particle-stimulated nucleation (PSN), which are related to nano-Al2Cu at grain boundaries and intergranular second phases, respectively. The Z1HR Al alloy showed good tensile strengths (\(\sim\) 500 MPa) and ductility \(\sim\) 0.068 after hot deformation. The better tensile properties of Z1HR than Z1, Z2 and Z2HR Al alloys can be ascribed to the precipitation strengthening effect. This study provides insights into novel precipitate structures that can be used in future alloy design.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig.11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

The raw and processed data required to regenerate these findings will be shared with interested parties upon reasonable request.

References

  1. J. Kirschner, W. Mayr-Schmölzer, J. Bernardi, R. Gaschl, S. Schwarz, C. Simson, G.B. Vonbun-Feldbauer, C. Eisenmenger-Sittner, Characterization of an Al–Cu–Mg–Zn multi principal element alloy by experimental and computational screening methods. Acta Mater. 224, 117510 (2022)

    Article  CAS  Google Scholar 

  2. Y. Zhang, S. Jin, P.W. Trimby, X. Liao, M.Y. Murashkin, R.Z. Valiev, J. Liu, J.M. Cairney, S.P. Ringer, G. Sha, Dynamic precipitation, segregation and strengthening of an Al–Zn–Mg–Cu alloy (AA7075) processed by high-pressure torsion. Acta Mater. 162, 19–32 (2019)

    Article  ADS  CAS  Google Scholar 

  3. A. Garner, R. Euesden, Y. Yao, Y. Aboura, H. Zhao, J. Donoghue, M. Curioni, B. Gault, P. Shanthraj, Z. Barrett, C. Engel, T.L. Burnett, P.B. Prangnell, Multiscale analysis of grain boundary microstructure in high strength 7xxx Al alloys. Acta Mater. 202, 190–210 (2021)

    Article  ADS  CAS  Google Scholar 

  4. M. Rongping, Q. Wan, The development of science and technology in China: a comparison with India and the United States. Technol. Soc. 30(3), 319–329 (2008)

    Article  Google Scholar 

  5. W. Jiang, S. Tao, H. Qiu, S. Wu, B. Zhu, Precipitation transformation and strengthening mechanism of droplet ejection lightweight medium-entropy AlZnMgCuLi alloy. J. Alloy. Compd. 922, 166152 (2022)

    Article  CAS  Google Scholar 

  6. B. Zhang, P.K. Liaw, J. Brechtl, J. Ren, X. Guo, Y. Zhang, Effects of Cu and Zn on microstructures and mechanical behavior of the medium-entropy aluminum alloy. J. Alloys Compd. 820, 153092 (2020)

    Article  CAS  Google Scholar 

  7. Y. Xie, X. Meng, R. Zang, Y. Chang, L. Wan, Y. Huang, Deformation-driven modification towards strength-ductility enhancement in Al–Li–Mg–Zn–Cu lightweight high-entropy alloys. Mater. Sci. Eng. A 830, 142332 (2022)

    Article  CAS  Google Scholar 

  8. C. Mondal, A.K. Mukhopadhyay, On the nature of T(Al2Mg3Zn3) and S(Al2CuMg) phases present in as-cast and annealed 7055 aluminum alloy. Mater. Sci. Eng. A 391(1–2), 367–376 (2005)

    Article  Google Scholar 

  9. H. Xiao, Z. Wang, J. Geng, C. Zhang, Y. Li, Q. Yang, M. Wang, D. Chen, Z. Li, H. Wang, Precipitation and crystallographic relationships of nanosized η/η’ precipitates at S–Al interface in Al–Zn–Mg–Cu alloy. Scr. Mater. 214, 114643 (2022)

    Article  CAS  Google Scholar 

  10. L. Zhu, T.-S. Liu, T.-T. Duan, T.-T. Li, F. Qiu, H.-Y. Yang, Z.-H. Bai, Y.-Y. Liu, Q.-C. Jiang, Design of a new Al–Cu alloy manipulated by in-situ nanocrystals with superior high temperature tensile properties and its constitutive equation. Mater. Des. 181, 107945 (2019)

    Article  CAS  Google Scholar 

  11. J.K. Sunde, D.N. Johnstone, S. Wenner, A.T.J. van Helvoort, P.A. Midgley, R. Holmestad, Crystallographic relationships of T-/S-phase aggregates in an Al–Cu–Mg–Ag alloy. Acta Mater. 166, 587–596 (2019)

    Article  ADS  CAS  Google Scholar 

  12. Z. Yu, S. Jin, M. Feng, M.Y. Murashkin, R.Z. Valiev, S.P. Ringer, G. Sha, Temperature-dependent-composition of η phase in an Al–Zn–Mg–Cu alloy under high pressure torsion: kinetics and thermodynamics. Acta Mater. 237, 118181 (2022)

    Article  CAS  Google Scholar 

  13. M. Crumbach, M. Goerdeler, G. Gottstein, Modelling of recrystallisation textures in aluminium alloys: I. Model set-up and integration. Acta Mater. 54(12), 3275–3289 (2006)

    Article  ADS  CAS  Google Scholar 

  14. J. Zhao, Y. Deng, J. Tang, Grain refining with DDRX by isothermal MDF of Al–Zn–Mg–Cu alloy. J. Market. Res. 9(4), 8001–8012 (2020)

    CAS  Google Scholar 

  15. Y.F. Shen, R.G. Guan, Z.Y. Zhao, R.D.K. Misra, Ultrafine-grained Al–0.2Sc–0.1Zr alloy: the mechanistic contribution of nano-sized precipitates on grain refinement during the novel process of accumulative continuous extrusion. Acta Mater. 100, 247–255 (2015)

    Article  ADS  CAS  Google Scholar 

  16. J. Lv, J.-H. Zheng, V.A. Yardley, Z. Shi, J. Lin, A review of microstructural evolution and modelling of aluminium alloys under hot forming conditions. Metals 10(11), 1516 (2020)

    Article  CAS  Google Scholar 

  17. Z. Li, H. Jiang, Y. Wang, D. Zhang, D. Yan, L. Rong, Effect of minor Sc addition on microstructure and stress corrosion cracking behavior of medium strength Al–Zn–Mg alloy. J. Mater. Sci. Technol. 34(7), 1172–1179 (2018)

    Article  ADS  CAS  Google Scholar 

  18. Y. Zhang, D. Juul Jensen, Y. Zhang, F. Lin, Z. Zhang, Q. Liu, Three-dimensional investigation of recrystallization nucleation in a particle-containing Al alloy. Scr. Mater. 67(4), 320–323 (2012)

    Article  CAS  Google Scholar 

  19. K. Wen, B. Xiong, Y. Zhang, Z. Li, X. Li, S. Huang, L. Yan, H. Yan, H. Liu, Over-aging influenced matrix precipitate characteristics improve fatigue crack propagation in a high Zn-containing Al–Zn–Mg–Cu alloy. Mater. Sci. Eng. A 716, 42–54 (2018)

    Article  CAS  Google Scholar 

  20. M.A. Afifi, Y.C. Wang, P.H.R. Pereira, Y. Wang, S. Li, Y. Huang, T.G. Langdon, Characterization of precipitates in an Al–Zn–Mg alloy processed by ECAP and subsequent annealing. Mater. Sci. Eng. A 712, 146–156 (2018)

    Article  CAS  Google Scholar 

  21. M.A. Afifi, Y.C. Wang, T.G. Langdon, Effect of dynamic plastic deformation on the microstructure and mechanical properties of an Al–Zn–Mg alloy. Mater. Sci. Eng. A 784, 139287 (2020)

    Article  CAS  Google Scholar 

  22. R.J. Dai, K.K. Deng, C.J. Wang, K.B. Nie, G.W. Zhang, W. Liang, Effects of precipitates and solute atoms on the work hardening and softening behavior of Zn-rich aluminum alloy. Mater. Sci. Eng. A 848, 143388 (2022)

    Article  CAS  Google Scholar 

  23. Y. Yu, Q. Pan, W. Wang, Z. Huang, S. Xiang, B. Liu, Dynamic softening mechanisms and Zener-Hollomon parameter of Al–Mg–Si–Ce–B alloy during hot deformation. J. Market. Res. 15, 6395–6403 (2021)

    CAS  Google Scholar 

  24. D. Tsivoulas, P.B. Prangnell, The effect of Mn and Zr dispersoid-forming additions on recrystallization resistance in Al–Cu–Li AA2198 sheet. Acta Mater. 77, 1–16 (2014)

    Article  ADS  CAS  Google Scholar 

  25. S. Imanian Ghazanlou, B. Eghbali, R. Petrov, EBSD characterization of Al7075/graphene nanoplates/carbon nanotubes composites processed through post-deformation annealing. Trans. Nonferrous Met. Soc. China 31(8), 2250–2263 (2021)

    Article  CAS  Google Scholar 

  26. X.-Y. Wang, J.-T. Jiang, G.-A. Li, X.-M. Wang, W.-Z. Shao, L. Zhen, Particle-stimulated nucleation and recrystallization texture initiated by coarsened Al2CuLi phase in Al–Cu–Li alloy. J. Market. Res. 10, 643–650 (2021)

    CAS  Google Scholar 

  27. J.D. Robson, D.T. Henry, B. Davis, Particle effects on recrystallization in magnesium–manganese alloys: particle-stimulated nucleation. Acta Mater. 57(9), 2739–2747 (2009)

    Article  ADS  CAS  Google Scholar 

  28. K. Huang, K. Marthinsen, Q. Zhao, R.E. Logé, The double-edge effect of second-phase particles on the recrystallization behaviour and associated mechanical properties of metallic materials. Prog. Mater. Sci. 92, 284–359 (2018)

    Article  CAS  Google Scholar 

  29. X. Zhang, L.K. Huang, B. Zhang, Y.Z. Chen, S.Y. Duan, G. Liu, C.L. Yang, F. Liu, Enhanced strength and ductility of A356 alloy due to composite effect of near-rapid solidification and thermo-mechanical treatment. Mater. Sci. Eng. A 753, 168–178 (2019)

    Article  CAS  Google Scholar 

  30. I. Gutierrez-Urrutia, M.A. Muñoz-Morris, D.G. Morris, Contribution of microstructural parameters to strengthening in an ultrafine-grained Al–7% Si alloy processed by severe deformation. Acta Mater. 55(4), 1319–1330 (2007)

    Article  ADS  CAS  Google Scholar 

  31. J.E. Bailey, P.B. Hirsch, The dislocation distribution, flow stress, and stored energy in cold-worked polycrystalline silver. Philos. Mag. J. Theor. Exp. Appl. Phys. 5(53), 485–497 (1960)

    CAS  Google Scholar 

  32. K. Ma, H. Wen, T. Hu, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, J.M. Schoenung, Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy. Acta Mater. 62, 141–155 (2014)

    Article  ADS  CAS  Google Scholar 

  33. S. Murugesan, P. Kuppusami, E. Mohandas, M. Vijayalakshmi, X-ray diffraction analysis of defects in cold worked type 316 stainless steel. AIP Conf. Proc. 1349(1), 485–486 (2011)

    Article  ADS  CAS  Google Scholar 

  34. R.L. Fleischer, Solution hardening by tetragonal dist ortions: application to irradiation hardening in F.C.C. crystals. Acta Metall. 10(9), 835–842 (1962)

    Article  CAS  Google Scholar 

  35. T. Hu, K. Ma, T.D. Topping, J.M. Schoenung, E.J. Lavernia, Precipitation phenomena in an ultrafine-grained Al alloy. Acta Mater. 61(6), 2163–2178 (2013)

    Article  ADS  CAS  Google Scholar 

  36. J.R. Davis (ed.), Aluminum and Aluminum Alloys, in Alloying: Understanding the Basics (ASM International, Materials Park, 2001), p. 351

  37. T.D. Topping, Nanostructured Aluminum Alloys and Their Composites, Ph.D. thesis, University of California (2012)

  38. Q.-N. Han, S.-S. Rui, W. Qiu, X. Ma, Y. Su, H. Cui, H. Zhang, H. Shi, Crystal orientation effect on fretting fatigue induced geometrically necessary dislocation distribution in Ni-based single-crystal superalloys. Acta Mater. 179, 129–141 (2019)

    Article  ADS  CAS  Google Scholar 

  39. T.S. Prithiv, P. Bhuyan, S.K. Pradhan, V. Subramanya Sarma, S. Mandal, A critical evaluation on efficacy of recrystallization vs. strain induced boundary migration in achieving grain boundary engineered microstructure in a Ni-base superalloy. Acta Mater. 146, 187–201 (2018)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge support from National Natural Science Foundation of China (Grant No. 52204381) and National Natural Science Foundation of China (Grant No. 52027805).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingyuan Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationship that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, S., Qi, M., Liao, L. et al. Utilization of Hot Deformation to Trigger Strain-Induced Boundary Migration, Particle-Stimulated Nucleation, and Influence of Nano-Precipitates on Mechanical Properties in High-Alloyed Al–Zn–Mg–Cu Alloys. Met. Mater. Int. (2024). https://doi.org/10.1007/s12540-024-01631-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12540-024-01631-x

Keywords

Navigation