Skip to main content
Log in

Corrosion Behavior of Alloy 22 According to Hydrogen Sulfide, Chloride, and pH in an Anaerobic Environment

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The corrosion behavior of Alloy 22 (UNS N06022) according to the hydrogen sulfide, chloride, and pH in an anaerobic environment was investigated through electrochemical tests, surface analyses, and response surface methodology (RSM). Complex corrosion behavior model according to the HS ion and Cl ion concentrations and pH was obtained through RSM. The Cl ion and pH had minimal effects on the corrosion behavior of Alloy 22. Meanwhile, the corrosion behavior of Alloy 22 changed significantly with increased HS ion concentration. As the HS ion concentration increases, sulfide ions are adsorbed on the metal surface, increasing the anodic dissolution of metal and suppressing the formation of Cr2O3 passive film, thereby deteriorating the passive properties of Alloy 22. Simultaneously, Mo in Alloy 22 forms MoS2, which acts as a pseudo-passive film to alleviate the corrosion resistance deterioration caused by HS ions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. D. Shoesmith, Corrosion 62, 703–722 (2006). https://doi.org/10.5006/1.3278296

    Article  CAS  Google Scholar 

  2. D.S. Hall, P.G. Keech, Corros. Eng. 52, 2–5 (2017). https://doi.org/10.1080/1478422X.2016.1275419

    Article  CAS  Google Scholar 

  3. D. Féron, D. Crusset, J.-M. Gras, J. Nucl. Mater. 379, 16–23 (2008). https://doi.org/10.1016/j.jnucmat.2008.06.023

    Article  ADS  CAS  Google Scholar 

  4. F. Zhang, C. Örnek, M. Liu, T. Müller, U. Lienert, V. Ratia-Hanby, L. Carpén, E. Isotahdon, J. Pan, Corros. Sci. 184, 109390 (2021). https://doi.org/10.1016/j.corsci.2021.109390

    Article  CAS  Google Scholar 

  5. F. Cattant, D. Crusset, D. Féron, Mater. Today 11, 32–37 (2008). https://doi.org/10.1016/S1369-7021(08)70205-0

    Article  CAS  Google Scholar 

  6. F. King, C. Lilja, K. Pedersen, P. Pitkänen, M. Vähänen An update of the state-of-the-art report on the corrosion of copper under expected conditions in a deep geologic repository, Swedish Nuclear Fuel and Waste Management Co. (2010)

  7. F. King, Corrosion 69, 986–1011 (2013). https://doi.org/10.5006/0894

    Article  CAS  Google Scholar 

  8. J.H. Payer, S. Finsterle, J.A. Apps, R.A. Muller, Energies 12, 1491 (2019). https://doi.org/10.3390/en12081491

    Article  CAS  Google Scholar 

  9. D.-C. Kong, C.-F. Dong, X. Kui, X.-G. Li, Trans. Nonferrous Met. Soc. China 27, 1431–1438 (2017). https://doi.org/10.1016/S1003-6326(17)60165-1

    Article  CAS  Google Scholar 

  10. F. King, in Geological Repository Systems for Safe Disposal of Spent Nuclear Fuels and Radioactive Waste, 2nd edn., ed. by M.J. Apted, J. Ahn (Woodhead Publishing, Cambridge, 2017), pp. 365–408

    Chapter  Google Scholar 

  11. F. King, C. Lilja, M. Vähänen, J. Nucl. Mater. 438, 228–237 (2013). https://doi.org/10.1016/j.jnucmat.2013.02.080

    Article  ADS  CAS  Google Scholar 

  12. G.S. Frankel, J.D. Vienna, J. Lian, X. Guo, S. Gin, S.H. Kim, J. Du, J.V. Ryan, J. Wang, W. Windl, Chem. Rev. 121, 12327–12383 (2021). https://doi.org/10.1021/acs.chemrev.0c00990

    Article  CAS  PubMed  Google Scholar 

  13. R. Carranza, JOM 60, 58–65 (2008). https://doi.org/10.1007/s11837-008-0009-z

    Article  ADS  CAS  Google Scholar 

  14. R.B. Rebak, J.C. Estill, MRS Online Proc. Libr. (OPL). (2002). https://doi.org/10.1557/PROC-757-II4.1

    Article  Google Scholar 

  15. D. Dunn, Y.-M. Pan, K. Chiang, L. Yang, G. Cragnolino, X. He, JOM 57, 49–55 (2005). https://doi.org/10.1007/s11837-005-0064-7

    Article  CAS  Google Scholar 

  16. R.B. Rebak, Corrosion 65, 252–271 (2009). https://doi.org/10.5006/1.3319132

    Article  CAS  Google Scholar 

  17. G.A. Cragnolino, D.S. Dunn, Y.-M. Pan, MRS Online Proc. Libr. (OPL) (2002). https://doi.org/10.1557/PROC-713-JJ1.6

    Article  Google Scholar 

  18. J. Gray, C. Orme, Electrochim. Acta 52, 2370–2375 (2007). https://doi.org/10.1016/j.electacta.2006.08.043

    Article  CAS  Google Scholar 

  19. A. Mishra, S. Ramamurthy, M. Biesinger, D. Shoesmith, Electrochim. Acta 100, 118–124 (2013). https://doi.org/10.1016/j.electacta.2013.03.161

    Article  CAS  Google Scholar 

  20. A. Mishra, D. Shoesmith, Electrochim. Acta 102, 328–335 (2013). https://doi.org/10.1016/j.electacta.2013.03.177

    Article  CAS  Google Scholar 

  21. J. Gray, J. Hayes, G. Gdowski, B. Viani, C. Orme, J. Electrochem. Soc. 153, B61 (2006). https://doi.org/10.1149/1.2160433

    Article  CAS  Google Scholar 

  22. M.A. Rodriguez, Corros. Rev. (2012). https://doi.org/10.1515/corrrev.2011.022

    Article  Google Scholar 

  23. N.S. Zadorozne, C. Giordano, M.A. Rodríguez, R.M. Carranza, R.B. Rebak, Electrochim. Acta 76, 94–101 (2012). https://doi.org/10.1016/j.electacta.2012.04.157

    Article  CAS  Google Scholar 

  24. P. Jakupi, F. Wang, J. Noël, D. Shoesmith, Corros. Sci. 53, 1670–1679 (2011). https://doi.org/10.1016/j.corsci.2011.01.028

    Article  CAS  Google Scholar 

  25. M.A. Rodríguez, R.M. Carranza, R.B. Rebak, J. Electrochem. Soc. 157, C1 (2009). https://doi.org/10.1149/1.3246790

    Article  CAS  Google Scholar 

  26. K. Pedersen, Microbial Processes in Radioactive Waste Disposal, Technical Report, TR-00-04 (Swedish Nuclear Fuel and Waste Management Co., Stockholm, 2000)

  27. J.-S. Lee, Y. Kitagawa, T. Nakanishi, Y. Hasegawa, K. Fushimi, J. Electrochem. Soc. 162, C685 (2015). https://doi.org/10.1149/2.0861512jes

    Article  CAS  Google Scholar 

  28. M. Ahmadi, K. Rahmani, A. Rahmani, H. Rahmani, Pol. J. Chem. Technol. 19, 104–112 (2017). https://doi.org/10.1515/pjct-2017-0015

    Article  CAS  Google Scholar 

  29. M. Wang, Z. Zhou, Q. Wang, Y. Liu, Z. Wang, X. Zhang, Results Phys. 15, 102708 (2019). https://doi.org/10.1016/j.rinp.2019.102708

    Article  Google Scholar 

  30. M. Aliofkhazraei, A.S. Rouhaghdam, A. Heydarzadeh, Mater. Charact. 60, 83–89 (2009). https://doi.org/10.1016/j.matchar.2008.07.003

    Article  CAS  Google Scholar 

  31. N.T. Chung, S.-R. Choi, J.-G. Kim, J. Electrochem. Soc. 169, 051503 (2022). https://doi.org/10.1149/1945-7111/ac700d/meta

    Article  ADS  CAS  Google Scholar 

  32. N.T. Chung, Y.-S. So, W.-C. Kim, J.-G. Kim, Materials 14, 6596 (2021). https://doi.org/10.3390/ma14216596

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. S. Sarkar, I. Koley, R.K. Baranwal, A. Mukherjee, S. Lamichaney, G. Majumdar, J. Phys. Conf. Ser. 1593, 012040 (2020). https://doi.org/10.1088/1742-6596/1593/1/012040

  34. G. Di Leo, F. Sardanelli, Eur. Radiol. Exp. 4, 18 (2020). https://doi.org/10.1186/s41747-020-0145-y

    Article  Google Scholar 

  35. K. Rajkumar, M. Muthukumar, Appl Water Sci 7, 637–652 (2017). https://doi.org/10.1007/s13201-015-0276-0

    Article  ADS  CAS  Google Scholar 

  36. S. Esmailzadeh, M. Aliofkhazraei, H. Sarlak, Prot. Met. Phys. Chem. Surf. 54, 976–989 (2018). https://doi.org/10.1134/S207020511805026X

    Article  CAS  Google Scholar 

  37. Y.-H. Lee, S.-R. Choi, S.-J. Ko, J.-G. Kim, J. Phys. Chem. Solids 176, 111226 (2023). https://doi.org/10.1016/j.jpcs.2023.111226

    Article  Google Scholar 

  38. J. Yang, H. Yang, H. Yu, Z. Wang, X. Zeng, Metall. Mater. Trans. A 48, 3583–3593 (2017). https://doi.org/10.1007/s11661-017-4087-9

    Article  CAS  Google Scholar 

  39. K.F. Quiambao, S.J. McDonnell, D.K. Schreiber, A.Y. Gerard, K.M. Freedy, P. Lu, J.E. Saal, G.S. Frankel, J.R. Scully, Acta Mater. 164, 362–376 (2019). https://doi.org/10.1016/j.actamat.2018.10.026

    Article  ADS  CAS  Google Scholar 

  40. Y. Xiao, J. Tang, Y. Wang, B. Lin, Z. Nie, Y. Li, B. Normand, H. Wang, Corros. Sci. 200, 110240 (2022). https://doi.org/10.1016/j.corsci.2022.110240

    Article  CAS  Google Scholar 

  41. A. Oladoye, J. Carton, K. Benyounis, J. Stokes, A. Olabi, Surf. Coat. Technol. 304, 384–392 (2016). https://doi.org/10.1016/j.surfcoat.2016.07.023

    Article  CAS  Google Scholar 

  42. X. Luo, R. Bai, D. Zhen, Z. Yang, D. Huang, H. Mao, X. Li, H. Zou, Y. Xiang, K. Liu, Ind. Crops Prod. 129, 405–413 (2019). https://doi.org/10.1016/j.indcrop.2018.12.029

    Article  CAS  Google Scholar 

  43. H.-Y. Kim, Restor. Dent. Endod. 43, e34 (2018). https://doi.org/10.5395/rde.2018.43.e34

    Article  PubMed  PubMed Central  Google Scholar 

  44. D.A. Jones, Principles and Prevention of Corrosion, 2nd edn. (Prentice Hall, Upper Saddle River, 1996)

  45. W. Sun, S. Nešić, D. Young, R.C. Woollam, Ind. Eng. Chem. Res. 47, 1738–1742 (2008). https://doi.org/10.1021/ie070750i

    Article  CAS  Google Scholar 

  46. M. Wiener, B. Salas, M. Quintero-Nunez, R. Zlatev, Corros. Eng. Sci. Technol. 41, 221–227 (2006). https://doi.org/10.1179/174327806X132204

    Article  CAS  Google Scholar 

  47. P. Marcus, Electrochim. Acta 43, 109–118 (1998). https://doi.org/10.1016/S0013-4686(97)00239-9

    Article  CAS  Google Scholar 

  48. V. Gattu, W. Ebert, J. Indacochea, S. Frank, Corros. Sci. 184, 109358 (2021). https://doi.org/10.1016/j.corsci.2021.109358

    Article  CAS  Google Scholar 

  49. J. Dai, H. Feng, H.-B. Li, Z.-H. Jiang, H. Li, S.-C. Zhang, P. Zhou, T. Zhang, Corros. Sci. 174, 108792 (2020). https://doi.org/10.1016/j.corsci.2020.108792

    Article  CAS  Google Scholar 

  50. J. Chivot, L. Mendoza, C. Mansour, T. Pauporté, M. Cassir, Corros. Sci. 50, 62–69 (2008). https://doi.org/10.1016/j.corsci.2007.07.002

    Article  CAS  Google Scholar 

  51. A. Tomio, M. Sagara, T. Doi, H. Amaya, N. Otsuka, T. Kudo, Corros. Sci. 98, 391–398 (2015). https://doi.org/10.1016/j.corsci.2015.05.053

    Article  CAS  Google Scholar 

  52. M. Shah, M. Ayob, R. Rosdan, N. Yaakob, Z. Embong, N. Othman, Sci. World J. (2020). https://doi.org/10.1155/2020/3989563

    Article  Google Scholar 

  53. S.J. Ko, Y.H. Lee, K.S. Nam, E.H. Park, J.G. Kim, Mater. Chem. Phys. 302, 127747 (2023). https://doi.org/10.1016/j.matchemphys.2023.127747

    Article  Google Scholar 

  54. C. Della Rovere, J. Alano, R. Silva, P. Nascente, J. Otubo, S. Kuri, Corros. Sci. 57, 154–161 (2012). https://doi.org/10.1016/j.corsci.2011.12.022

    Article  CAS  Google Scholar 

  55. Z. Cui, S. Chen, Y. Dou, S. Han, L. Wang, C. Man, X. Wang, S. Chen, Y.F. Cheng, X. Li, Corros. Sci. 150, 218–234 (2019). https://doi.org/10.1016/j.corsci.2019.02.002

    Article  CAS  Google Scholar 

  56. Y.-S. Kim, J.-G. Kim, Mater. Trans. 58, 76–84 (2017). https://doi.org/10.2320/matertrans.M2016310

    Article  CAS  Google Scholar 

  57. P. Mourya, P. Singh, A. Tewari, R. Rastogi, M. Singh, Corros. Sci. 95, 71–87 (2015). https://doi.org/10.1016/j.corsci.2015.02.034

    Article  CAS  Google Scholar 

  58. Y.-H. Lee, M.-S. Hong, S.-J. Ko, J.-G. Kim, Materials 14, 2722 (2021). https://doi.org/10.3390/ma14112722

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  59. A. Bahramian, M. Eyraud, S. Maria, F. Vacandio, T. Djenizian, P. Knauth, Corros. Sci. 149, 75–86 (2019). https://doi.org/10.1016/j.corsci.2018.12.026

    Article  CAS  Google Scholar 

  60. H. Huang, F. Bu, Corros. Sci. 165, 108413 (2020). https://doi.org/10.1016/j.corsci.2019.108413

    Article  CAS  Google Scholar 

  61. J. Moreto, C. Marino, W. Bose Filho, L. Rocha, J. Fernandes, Corros. Sci. 84, 30–41 (2014). https://doi.org/10.1016/j.corsci.2014.03.001

    Article  CAS  Google Scholar 

  62. T. Bellezze, G. Giuliani, G. Roventi, Corros. Sci. 130, 113–125 (2018). https://doi.org/10.1016/j.corsci.2017.10.012

    Article  CAS  Google Scholar 

  63. J.N. Kuhn, N. Lakshminarayanan, U.S. Ozkan, J. Mol. Catal. A: Chem. 282, 9–21 (2008). https://doi.org/10.1016/j.molcata.2007.11.032

    Article  CAS  Google Scholar 

  64. J.A. Leiro, E.E. Minni, Philos. Mag. B 49, L61–L64 (1984). https://doi.org/10.1080/13642818408227640

    Article  ADS  CAS  Google Scholar 

  65. D. Shuttleworth, J. Phys. Chem. 84, 1629–1634 (1980). https://doi.org/10.1021/j100449a038

    Article  CAS  Google Scholar 

  66. S. Mischler, H. Mathieu, D. Landolt, Surf. Interface Anal. 11, 182–188 (1988). https://doi.org/10.1002/sia.740110403

    Article  CAS  Google Scholar 

  67. M. Monnot, R.P. Nogueira, V. Roche, G. Berthomé, E. Chauveau, R. Estevez, M. Mantel, Appl. Surf. Sci. 394, 132–141 (2017). https://doi.org/10.1016/j.apsusc.2016.10.072

    Article  ADS  CAS  Google Scholar 

  68. J.-G. Choi, L. Thompson, Appl. Surf. Sci. 93, 143–149 (1996). https://doi.org/10.1016/0169-4332(95)00317-7

    Article  ADS  CAS  Google Scholar 

  69. I. Alstrup, I. Chorkendorff, R. Candia, B.S. Clausen, H. Topsøe, J. Catal. 77, 397–409 (1982). https://doi.org/10.1016/0021-9517(82)90181-6

    Article  CAS  Google Scholar 

  70. J. Vissers, C. Groot, E. Van Oers, D. Beer, R. Prins, Bull. Soc. Chim. Belg. 93, 813–822 (1984). https://doi.org/10.1002/bscb.19840930822

    Article  CAS  Google Scholar 

  71. M. Mantel, J. Wightman, Surf. Interface Anal. 21, 595–605 (1994). https://doi.org/10.1002/sia.740210902

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the SungKyunKwan University and the BK21 FOUR (Graduate School Innovation) funded by the Ministry of Education (MOE, Korea) and National Research Foundation of Korea (NRF), as well as the Nuclear Research & Development Program of the National Research Foundation of Korea (NRF) funded by the Korea government Ministry of Science and ICT (MSIT) (NRF-2021M2E1A1085195).

Author information

Authors and Affiliations

Authors

Contributions

YHL: Conceptualization, Methodology, Validation, Formal analysis, Investigation, Resources, Writing—Original Draft, Writing—Review and Editing, Visualization. JSY: Conceptualization, Methodology, Data Curation, Writing—Review and Editing. YWK: Methodology, Validation, Data Curation, Writing—Review and Editing. JGK: Conceptualization, Methodology, Writing—Review and Editing, Supervision, Project administration, Funding acquisition.

Corresponding author

Correspondence to Jung-Gu Kim.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 48 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, YH., Yoo, JS., Kim, YW. et al. Corrosion Behavior of Alloy 22 According to Hydrogen Sulfide, Chloride, and pH in an Anaerobic Environment. Met. Mater. Int. (2024). https://doi.org/10.1007/s12540-023-01624-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12540-023-01624-2

Keywords

Navigation