Skip to main content
Log in

Non-reciprocal Heterogeneous Nucleation in Solidification of Ag–Cu Alloys

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Taking Ag-27 at% Cu hypoeutectic and Ag-67 at% Cu hypereutectic alloys as examples, a theoretical criterion was established based on the classical nucleation theory to predict the non-reciprocal nucleation. For a eutectic alloy composed of α and β solid phases, non-reciprocal nucleation will not occur if the critical nucleation work of one phase on the other phase is approximately equal to that of the latter on the former. Otherwise, one phase can act as the more effective nucleation substrate for the other phase and non-reciprocal nucleation takes place. For Ag–Cu alloys, the wetting angle of β-Cu on α-Ag is larger than that of α-Ag on β-Cu, but the critical nucleation work for β-Cu to heterogeneously nucleate on α-Ag in hypoeutectic alloys is obviously smaller than that for α-Ag on β-Cu in hypereutectic Ag–Cu alloys. Thus, α-Ag phase is a better nucleant for β-Cu phase than vice versa and the Ag–Cu alloys solidify with non-reciprocal nucleation, reflected by only a halo of α-Ag around primary β-Cu phase in the hypereutectic Ag–Cu alloy.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C. Lemaignan, M.C. Cheynet, N. Eustathopoulos, J. Cryst. Growth. 50, 720–728 (1980). https://doi.org/10.1016/0022-0248(80)90018-4

    Article  CAS  Google Scholar 

  2. S.M. Sadrossadat, S. Johansson, R.L. Peng, Met. Mater. Int. 18, 405–411 (2012). https://doi.org/10.1007/s12540-012-3004-4

    Article  CAS  Google Scholar 

  3. S.T. Bluni, M.R. Notis, A.R. Marder, Acta Metall. Mater 43, 1775–1782 (1995). https://doi.org/10.1016/0956-7151(94)00397-Z

    Article  CAS  Google Scholar 

  4. M.F. Gigliotti, G.A. Colligan, G.L.F. Powell, Metall. Trans. 1, 891–897 (1970). https://doi.org/10.1007/BF02811770

    Article  CAS  Google Scholar 

  5. G.L.F. Powell, G.A. Colligan, Metall. Trans. 2, 849–852 (1971). https://doi.org/10.1007/BF02662745

    Article  CAS  Google Scholar 

  6. C. Lemaignan, Acta Metall. Mater. 29, 1379–1384 (1981). https://doi.org/10.1016/0001-6160(81)90173-5

    Article  CAS  Google Scholar 

  7. R.T. Southin, G.A. Chadwick, Acta Metall. Mater. 26, 223–231 (1978). https://doi.org/10.1016/0001-6160(78)90122-0

    Article  CAS  Google Scholar 

  8. B. Cantor, R.D. Doherty, Acta Metall. Mater. 27, 33–46 (1979). https://doi.org/10.1016/0001-6160(79)90054-3

    Article  CAS  Google Scholar 

  9. M. Pourgharibshahi, M. Divandari, H. Saghafian, G. Timelli, Metall. Mater. Trans. A 51, 4572–4583 (2020). https://doi.org/10.1007/s11661-020-05876-0

    Article  CAS  Google Scholar 

  10. J.H. Hollomon, D. Turnbull, JOM 3, 803–805 (1951). https://doi.org/10.1007/BF03397378

    Article  CAS  Google Scholar 

  11. V.V. Podolinsky, J. Cryst. Growth. 98, 838–842 (1989). https://doi.org/10.1016/0022-0248(89)90324-2

    Article  Google Scholar 

  12. B.E. Sundquist, L.F. Mondolfo, Trans. Metall. Soc. AIME 221, 157–164 (1961)

    CAS  Google Scholar 

  13. Y.H. Zhao, Npj Comput. Mater. 9, 94 (2023). https://doi.org/10.1038/s41524-023-01038-z

    Article  Google Scholar 

  14. F.J. Bradshaw, M.E. Gasper, S. Pearson, J. Inst. Met. 87, 15–18 (1958)

    CAS  Google Scholar 

  15. M.E. Glicksman, W.J. Childs, Acta Metall. Mater. 10, 925–933 (1962). https://doi.org/10.1016/0001-6160(62)90142-6

    Article  CAS  Google Scholar 

  16. W.B. Castro, M.L. Maia, C.S. Kiminami, C. Bolfarini, Mater. Sci. Eng. A 304, 255–261 (2001). https://doi.org/10.1016/S0921-5093(00)01519-7

    Article  Google Scholar 

  17. P.R. Subramanian, J.H. Perepezko, J. Phase Equilib. 14, 62–75 (1993). https://doi.org/10.1007/BF02652162

    Article  CAS  Google Scholar 

  18. S. Walder, P.L. Ryder, J. Appl. Phys. 73, 1965–1970 (1993). https://doi.org/10.1063/1.353187

    Article  CAS  Google Scholar 

  19. S. Zhao, J.F. Li, L. Liu, Y.H. Zhou, Mater. Charact. 60, 519–524 (2009). https://doi.org/10.1016/j.matchar.2008.12.006

    Article  CAS  Google Scholar 

  20. H. Dong, Y.Z. Chen, Z.R. Zhang, G.B. Shan, W.X. Zhang, F. Liu, J. Mater. Sci. Technol. 59, 173–179 (2020). https://doi.org/10.1016/j.jmst.2020.05.019

    Article  CAS  Google Scholar 

  21. V.V. Podolinsky, Y.N. Taran, V.G. Drykin, J. Cryst. Growth. 74, 57–66 (1986). https://doi.org/10.1016/0022-0248(86)90248-4

    Article  Google Scholar 

  22. M.A. Easton, D.H. Stjohn, Acta Mater. 49, 1867–1878 (2001). https://doi.org/10.1016/S1359-6454(00)00368-2

    Article  CAS  Google Scholar 

  23. W.T. Kim, B. Cantor, Acta Metall. Mater. 42, 3115–3127 (1994). https://doi.org/10.1016/0956-7151(94)90409-X

    Article  CAS  Google Scholar 

  24. M. Hillert, P. Equilibria, Phase Diagrams and Phase Transformations: Their Thermodynamic Basis, 2nd edn. (Cambridge University Press, New York, 2007), pp.142–143

    Book  Google Scholar 

  25. Y.H. Zhao, B. Zhang, H. Hou, W.P. Chen, M. Wang, J. Mater. Sci. Technol. 35, 1044–1052 (2019). https://doi.org/10.1016/j.jmst.2018.12.009

    Article  Google Scholar 

  26. L.Q. Chen, Y.H. Zhao, Prog. Mater. Sci. 124, 100868 (2022). https://doi.org/10.1016/j.pmatsci.2021.100868

    Article  CAS  Google Scholar 

  27. Z. Chvoj, S. Srikanth, P. Ramachandrarao, J. Non-Equilib, Thermodyn 24, 360–371 (1999). https://doi.org/10.1515/JNETDY.1999.021

    Article  CAS  Google Scholar 

  28. Z.Y. Jian, K. Kuribayashi, W.Q. Jie, Mater. Trans. 43, 721–726 (2002). https://doi.org/10.2320/matertrans.43.721

    Article  CAS  Google Scholar 

  29. Z.Y. Jian, N. Li, M. Zhu, J. Chen, F.G. Chang, W.Q. Jie, Acta Mater. 60, 3590–3603 (2012). https://doi.org/10.1016/j.actamat.2012.02.038

    Article  CAS  Google Scholar 

  30. V.T. Witusiewicz, U. Hecht, S.G. Fries, S. Rex, J. Alloys Compd. 385, 133–143 (2004). https://doi.org/10.1016/j.jallcom.2004.04.126

    Article  CAS  Google Scholar 

  31. A.T. Dinsdale, Calphad 15, 317–425 (1991). https://doi.org/10.1016/0364-5916(91)90030-N

    Article  CAS  Google Scholar 

  32. G. Kaptay, J. Mater. Sci. 50, 678–687 (2015). https://doi.org/10.1007/s10853-014-8627-z

    Article  CAS  Google Scholar 

  33. D.N. Lee, Met. Mater. Int. 23, 320–325 (2017). https://doi.org/10.1007/s12540-017-6360-2

    Article  CAS  Google Scholar 

  34. M. Enomoto, Met. Mater. Int. 4, 115–123 (1998). https://doi.org/10.1007/BF03026028

    Article  CAS  Google Scholar 

  35. J.B. Liu, Y.W. Zeng, L. Meng, J. Alloys Compd. 464, 168–173 (2008). https://doi.org/10.1016/j.jallcom.2007.10.015

    Article  CAS  Google Scholar 

  36. B.P. Eftink, N.A. Mara, O.T. Kingstedt, D. Safarik, S. Wang, J. Lambros, I.M. Robertson, Mater. Sci. Eng. A 712, 313–324 (2018). https://doi.org/10.1016/j.msea.2017.11.108

    Article  CAS  Google Scholar 

  37. Y.H. Zhao, K.X. Liu, H. Hou, L.Q. Chen, Mater. Des. 216, 110555 (2022). https://doi.org/10.1016/j.matdes.2022.110555

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 52231002, 51620105012 and 51821001).

Author information

Authors and Affiliations

Authors

Contributions

QQ: Conceptsualization, Methodology, Validation, Formal analysis, Investigation, Writing—original draft, Writing—review and editing, Visualization. ZZ Formal analysis, Validation, Writing—review and editing. LY Investigation, Writing—review and editing. JL Methodology, Validation, Writing—review and editing.

Corresponding author

Correspondence to Jinfu Li.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, Q., Zhang, Z., Yang, L. et al. Non-reciprocal Heterogeneous Nucleation in Solidification of Ag–Cu Alloys. Met. Mater. Int. 30, 1270–1281 (2024). https://doi.org/10.1007/s12540-023-01580-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-023-01580-x

Keywords

Navigation