Skip to main content
Log in

Effect of Cell Geometry and Heat Treatment on the Energy Absorption Property of AlSi10Mg Alloy Lattice Structures Produced by Laser-Based Powder Bed Fusion

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In the present study, microstructural characteristics, compression behavior and energy absorption property of AlSi10Mg Octet Truss, FCC and Tetra lattice structures with volume fraction of 30%, 50%, and 70% produced using Laser-based powder bed fusion (L-PBF) method have been investigated. Proper selection of processing parameters for L-PBF enables high internal and surface quality even though node and strut in the lattice structure are very thin. AlSi10Mg lattice structure consists of a cellular structure composed of α-Al and intercellular eutectic Si. With heat treatment, needle shape Mg2Si precipitates in the α-Al matrix. Octet Truss, FCC and Tetra lattice structures show similar compression fracture behavior. The maximum fracture forces for Octet Truss, FCC and Tetra lattice structures (70% volume fraction) are 22.0 kN, 23.7 kN and 23.7 kN, respectively, while the energy absorption values up to 8 mm displacement are 128.1 J, 126.0 J and 88.9 J, respectively. With heat treatment, the maximum fracture force and the absorbed energy decreased when compared to those in as-built condition. When considering application of AlSi10Mg alloy lattice structure in shock absorbing part, FCC lattice structure with 70% volume fraction exhibits the most optimum combination of mechanical property and shock absorption characteristics.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations.

References

  1. A. du Plessis, S.M.J. Razavi, M. Benedetti, S. Murchio, M. Leary, M. Watson, D. Bhate, F. Berto, Prog. Mater. Sci. 125, 100918 (2022). https://doi.org/10.1016/j.pmatsci.2021.100918

    Article  CAS  Google Scholar 

  2. T. Maconachie, M. Leary, B. Lozanovski, X. Zhang, M. Qian, O. Faruque, M. Brandt, Mater. Des. 183, 108137 (2019). https://doi.org/10.1016/j.matdes.2019.108137

    Article  Google Scholar 

  3. M. Liu, N. Takata, A. Suzuki, M. Kobashi, J. mater. sci. technol. 36, 106–117 (2020). https://doi.org/10.1016/j.jmst.2019.06.015

    Article  CAS  Google Scholar 

  4. Z. Dong, Y. Liu, Q. Zhang, J. Ge, S. Ji, W. Li, J. Liang, J. Alloys Compd. 833, 155071 (2020). https://doi.org/10.1016/j.jallcom.2020.155071

    Article  CAS  Google Scholar 

  5. M. Leary, M. Mazur, J. Elambasseril, M. McMillan, T. Chirent, Y. Sun, M. Qian, M. Easton, M. Brandt, Mater. Des. 98, 344–357 (2016). https://doi.org/10.1016/j.matdes.2016.02.127

    Article  CAS  Google Scholar 

  6. X. Cai, C. Pan, J. Wang, W. Zhang, Z. Fan, Y. Gao, P. Xu, H. Sun, J. Li, W. Yang, J. Alloys Compd. 897, 162933 (2022). https://doi.org/10.1016/j.jallcom.2021.162933

    Article  CAS  Google Scholar 

  7. D. Li, R. Qin, B. Chen, J. Zhou, Mater. Sci. Eng. A 822, 141666 (2021). https://doi.org/10.1016/j.msea.2021.141666

    Article  CAS  Google Scholar 

  8. M. Leary, M. Mazur, H. Williams, E. Yang, A. Alghamdi, B. Lozanovski, X. Zhang, D. Shidid, L. Farahbod-Sternahl, G. Witt, I. Kelbassa, P. Choong, M. Qian, M. Brandt, Mater. Des. 157, 179–199 (2018). https://doi.org/10.1016/j.matdes.2018.06.010

    Article  CAS  Google Scholar 

  9. X. Guo, J. Ding, X. Li, S. Qu, X. Song, J.Y.H. Fuh, W.F. Lu, W. Zhai, Int. J. Mech. Sci. 216, 106977 (2022). https://doi.org/10.1016/j.ijmecsci.2021.106977

    Article  Google Scholar 

  10. D. Li, R. Qin, J. Xu, B. Chen, X. Niu, Mater Charact 187, 111882 (2022). https://doi.org/10.1016/j.matchar.2022.111882

    Article  CAS  Google Scholar 

  11. T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Prog. Mater. Sci. 92, 112–224 (2018). https://doi.org/10.1016/j.pmatsci.2017.10.001

    Article  CAS  Google Scholar 

  12. C. Yan, L. Hao, A. Hussein, S.L. Bubb, P. Young, D. Raymont, J. Mater. Process. Technol. 214(4), 856–864 (2014). https://doi.org/10.1016/j.jmatprotec.2013.12.004

    Article  CAS  Google Scholar 

  13. A. Tamer Erturk, M. Enes Bulduk, G. Trakci, G. Ozer, E. Yarar, Met. Mater. Int. 28, 155–167 (2022). https://doi.org/10.1007/s12540-021-01038-y

    Article  CAS  Google Scholar 

  14. P. Li, Y.E. Ma, W. Sun, X. Qian, W. Zhang, Z. Wang, Eng. Fract. Mech. 244, 107537 (2021). https://doi.org/10.1016/j.engfracmech.2021.107537

    Article  Google Scholar 

  15. S. Gangireddy, M. Komarasamy, E.J. Faierson, R.S. Mishra, Mater. Sci. Eng. A 745, 231–239 (2019). https://doi.org/10.1016/j.msea.2018.12.101

    Article  CAS  Google Scholar 

  16. J. Ge, J. Huang, Y. Lei, P. O’Reilly, M. Ahmed, C. Zhang, X. Yan, S. Yin, Surf. Coat. 403, 126419 (2020). https://doi.org/10.1016/j.surfcoat.2020.126419

    Article  CAS  Google Scholar 

  17. M.G. Isaenkova, A.V. Yudin, A.E. Rubanov, A.V. Osintsev, L.A. Degadnikova, J. Mater. Res. Technol. 9(6), 15177–15184 (2020). https://doi.org/10.1016/j.jmrt.2020.10.089

    Article  CAS  Google Scholar 

  18. P. Köhnen, C. Haase, J. Bültmann, S. Ziegler, J.H. Schleifenbaum, W. Bleck, Mater. Des. 145, 205–217 (2018). https://doi.org/10.1016/j.matdes.2018.02.062

    Article  CAS  Google Scholar 

  19. T. Zhong, K. He, H. Li, L. Yang, Mater. Des. 181, 108076 (2019). https://doi.org/10.1016/j.matdes.2019.108076

    Article  CAS  Google Scholar 

  20. S.Y. Ahn, J. Moon, Y.T. Choi, E.S. Kim, S.G. Jeong, J.M. Park, M. Kang, H. Joo, H.S. Kim, Mater. Sci. Eng. A 844, 143164 (2022). https://doi.org/10.1016/j.msea.2022.143164

    Article  CAS  Google Scholar 

  21. H. Zhang, Y. Wang, J.J. Wang, D.R. Ni, D. Wang, B.L. Xiao, Z.Y. Ma, J. mater. sci. technol. 108, 226–235 (2022). https://doi.org/10.1016/j.jmst.2021.07.059

    Article  CAS  Google Scholar 

  22. X. Liu, C. Zhao, X. Zhou, Z. Shen, W. Liu, Mater. Des. 168, 107677 (2019). https://doi.org/10.1016/j.matdes.2019.107677

    Article  CAS  Google Scholar 

  23. N.T. Aboulkhair, M. Simonelli, L. Parry, I. Ashcroft, C. Tuck, R. Hague, Prog. Mater. Sci. 106, 100578 (2019). https://doi.org/10.1016/j.pmatsci.2019.100578

    Article  CAS  Google Scholar 

  24. Z. Jiang, Y. Li, H. Luo, B. Zhou, Y. Liang, Y. Liang, Met. Mater. Int. 28, 2934–2946 (2022). https://doi.org/10.1007/s12540-022-01199-4

    Article  Google Scholar 

  25. J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, T.M. Pollock, Nature 549(7672), 365–369 (2017). https://doi.org/10.1038/nature23894

    Article  CAS  PubMed  Google Scholar 

  26. J. Choe, K.T. Kim, J.H. Yu, J.M. Park, D.Y. Yang, S.H. Jung, S. Jo, H. Joo, M. Kang, S.Y. Ahn, S.G. Jeong, E.S. Kim, H. Lee, H.S. Kim, Addit. Manuf. 62, 103370 (2023). https://doi.org/10.1016/j.addma.2022.103370

    Article  CAS  Google Scholar 

  27. J. Zhao, L. Luo, X. Xue, T. Liu, L. Luo, B. Wang, Y. Wang, L. Wang, Y. Su, J. Guo, H. Fu, Mater. Sci. Eng. A 824, 141863 (2021). https://doi.org/10.1016/j.msea.2021.141863

    Article  CAS  Google Scholar 

  28. H. Zhang, D. Gu, D. Dai, C. Ma, Y. Li, M. Cao, S. Li, Appl. Surf. Sci. 509, 145330 (2020). https://doi.org/10.1016/j.apsusc.2020.145330

    Article  CAS  Google Scholar 

  29. H. Tang, Y. Geng, J. Luo, J. Xu, H. Ju, L. Yu, Met. Mater. Int. 27, 2592–2599 (2021). https://doi.org/10.1007/s12540-020-00907-2

    Article  CAS  Google Scholar 

  30. J. Yu, Y. Geng, Z. Zhang, H. Ju, Met. Mater. Int. 29, 3235–3248 (2023). https://doi.org/10.1007/s12540-023-01449-z

    Article  CAS  Google Scholar 

  31. U. Patakham, A. Palasay, P. Wila, R. Tongsri, Mater. Sci. Eng. A 821, 141602 (2021). https://doi.org/10.1016/j.msea.2021.141602

    Article  CAS  Google Scholar 

  32. M. Albu, R. Krisper, J. Lammer, G. Kothleitner, J. Fiocchi, P. Bassani, Addit. Manuf. 36, 101605 (2020). https://doi.org/10.1016/j.addma.2020.101605

    Article  CAS  Google Scholar 

  33. Y.S. Eom, J.M. Park, J.W. Choi, D.J. Seong, H. Joo, Y.C. Jo, K.T. Kim, J.H. Yu, I. Son, J. Alloys Compd. 956, 170348 (2023). https://doi.org/10.1016/j.jallcom.2023.170348

    Article  CAS  Google Scholar 

  34. N. Tabatabaei, A. Zarei-Hanzaki, A. Moshiri, H.R. Abedi, J. Mater. Res. Technol. 23, 6039–6053 (2023). https://doi.org/10.1016/j.jmrt.2023.02.086

    Article  CAS  Google Scholar 

  35. N. Limbasiya, A. Jain, H. Soni, G. Krolczyk, P. Sahlot, J. Mater. Res. Technol. 21, 1141–1176 (2022). https://doi.org/10.1016/j.jmrt.2022.09.092

    Article  CAS  Google Scholar 

  36. N. Read, W. Wang, K. Essa, M.M. Attallah, Mater. Des. 1980–2015(65), 417–424 (2015). https://doi.org/10.1016/j.matdes.2014.09.044

    Article  CAS  Google Scholar 

  37. R.F. Fernandes, J.S. Jesus, R. Branco, L.P. Borrego, J.D. Costa, J.A.M. Ferreira, Int. J. Fatigue 164, 107157 (2022). https://doi.org/10.1016/j.ijfatigue.2022.107157

    Article  CAS  Google Scholar 

  38. R.E. Gite, V.D. Wakchaure, Mater. Today Proc. 72, 966–986 (2023). https://doi.org/10.1016/j.matpr.2022.09.100

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Material component technology development project, NTIS 1415180233, KEIT 20020283, Development of 3.0 GPa% grade aluminum alloy and casting analysis technology for high vacuum die casting, funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea), and by Hyundai Motor Group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Do Hyang Kim.

Ethics declarations

Conflict of interest

The authors have no competing interest in financial interest/personal relationships.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

12540_2023_1567_MOESM1_ESM.pptx

Supplementary Fig. S1 X-ray diffraction patterns obtained from AlSi10Mg Octet Truss lattice structure sample with volume fraction of 70 % in as-built condition and after heat treatment at 270 ℃ for 1.5 h and 4.5 h, Supplementary Fig. S2 Engineering stress-strain curves obtained from as-built bulk and heat-treatment. (PPTX 559 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joo, H.M., Kim, W.C., Jung, Y.I. et al. Effect of Cell Geometry and Heat Treatment on the Energy Absorption Property of AlSi10Mg Alloy Lattice Structures Produced by Laser-Based Powder Bed Fusion. Met. Mater. Int. 30, 1294–1306 (2024). https://doi.org/10.1007/s12540-023-01567-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-023-01567-8

Keywords

Navigation