Skip to main content
Log in

Effect of ECAP on Mechanical Properties and Corrosion Resistance of 2024-CNTs@Ni Composite

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The 2024-1.5 wt%CNTs@Ni (Nickel-coated carbon nanotubes) composite were subjected to equal channel angle pressing (ECAP) deformation treatment and the microstructure, hardness distribution and tensile properties were investigated and discussed. The quasi-in-situ corrosion observation and COMSOL corrosion simulation were used to analyze and reveal its corrosion behavior. The results showed that the stress and microstrain are mainly concentrated in the area near the inside corner, and the closer the inside corner, the finer the grain size and the more dispersed the second phase and CNTs@Ni. The average hardness of the ECAP-treated composite was about 136.54 HV, which was 44.41% higher than that of the as-cast composite (94.55 HV). The properties of the ECAP-treated composite were all higher than the as-cast composite, with the yield strength, tensile strength and elongation increasing to 283.49 MPa, 399.18 MPa and 11.69%, respectively, which were about 44.99%, 45.97% and 344.49% higher than the as-cast composite. The electrochemical properties of the ECAP-treated composite were better than the as-cast composite, with a corrosion current density of 88.319 μA∙cm2, which was 12.33% lower than that of the as-cast composite. The COMSOL simulation results indicated that the ECAP-treated composite required a longer time when the electrolyte was immersed to the same depth.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. S.W. Kim, S.W. Han, J.H. Zong, Fatigue crack growth in 2024 aluminum alloy with inhomogeneous solidification microstructure. Met. Mater. Int. 11, 443–448 (2005)

    Article  CAS  Google Scholar 

  2. T. Dursun, C. Soutis, Recent developments in advanced aircraft aluminium alloys. Mater. Des. 56, 862–871 (2014)

    Article  CAS  Google Scholar 

  3. J.C. Williams, E.A. Starke, Progress in structural materials for aerospace systems. Acta Mater. 51, 5775–5799 (2003)

    Article  CAS  Google Scholar 

  4. P.B. Li, T.J. Chen, S.Q. Zhang, Effects of reheating time on microstructure and tensile properties of SiCp/2024 Al-based composites fabricated using powder thixoforming. Met. Mater. Int. 23, 193–201 (2017)

    Article  CAS  Google Scholar 

  5. L. Deng, P. Zhou, X.Y. Wang, J.S. Jin, T. Zhao, Microstructure evolution and modeling of 2024 aluminum alloy sheets during hot deformation under different stress states. Met. Mater. Int. 24, 112–120 (2018)

    Article  CAS  Google Scholar 

  6. H.B. Yang, S. Tian, T. Gao, J.F. Nie, Z.S. You, G.L. Liu, H.C. Wang, X.F. Liu, High-temperature mechanical properties of 2024 Al matrix nanocomposite reinforced by TiC network architecture. Mater. Sci. Eng. A 763, 138121 (2019)

    Article  CAS  Google Scholar 

  7. P.R.O. Brito, C.R.L. Loayza, M.E.S. Sousa, E.M. Braga, R.S. Angelica, S.P.A. da Paz, M.A.L. Reis, Cast aluminum surface reinforced with carbon nanotube via solubilization treatment. Met. Mater. Int. 28, 802–810 (2022)

    Article  CAS  Google Scholar 

  8. K.G. Thirugnanasambantham, T. Sankaramoorthy, A.S.A. Kishan, M.K. Reddy, Strengthening mechanisms of aluminium (Al) carbon nano tube (CNT) composites: a comprehensive review - Part 1. Mater. Today: Proc. 60, 1468–1473 (2022)

    CAS  Google Scholar 

  9. X.W. Gong, Z.Y. Cao, M. Zeng, X.L. Zou, Y.L. Yang, H. Yan, Effect of aging treatment on the microstructure and mechanical properties of TiO2@CNTs/2024 composite. J. Mater. Sci. 57, 16675–16689 (2022)

    Article  CAS  Google Scholar 

  10. V. Khanna, V. Kumar, S.A. Bansal, Mechanical properties of aluminium-graphene/carbon nanotubes (CNTs) metal matrix composites: advancement, opportunities and perspective. Mater. Res. Bull. 138, 111224 (2021)

    Article  CAS  Google Scholar 

  11. M.J. Wang, J.H. Shen, B. Chen, Y.F. Wang, J. Umeda, K. Kondoh, Y.L. Li, Compressive behavior of CNT-reinforced aluminum matrix composites under various strain rates and temperatures. Ceram. Int. 48, 10299–10310 (2022)

    Article  CAS  Google Scholar 

  12. H.P. Li, J.W. Fan, J.L. Kang, N.Q. Zhao, X.X. Wang, B.E. Li, In-situ homogeneous synthesis of carbon nanotubes on aluminum matrix and properties of their composites. Trans. Nonferrous Met. Soc. China 24, 2331–2336 (2014)

    Article  CAS  Google Scholar 

  13. Z.B. Liu, H. Yan, K. Tu, J.J. Xiong, Microstructure and tribological properties of Al 7075-TiO2@CNTs composites under T6 treatment. Vacuum 199, 110949 (2022)

    Article  CAS  Google Scholar 

  14. M. Zeng, H. Yan, K. Li, Y.S. Lei, Microstructure, wettability, and mechanical properties of ADC12 alloy reinforced with TiO2-coated carbon nanotubes. J. Alloys Compd. 897, 163181 (2002)

    Article  Google Scholar 

  15. Y.C. Mao, Y. Zhu, C.M. Deng, S.K. Sun, D.H. Xia, Analysis of localized corrosion mechanism of 2024 aluminum alloy at a simulated marine splash zone. Eng. Failure Anal. 142, 106759 (2022)

    Article  CAS  Google Scholar 

  16. J.Z. Qiao, X.W. Zhang, G.Q. Chen, W.L. Zhou, X.S. Fu, J.W. Wang, Effect of shot peen forming on corrosion-resistant of 2024 aluminum alloy in salt spray environment. J. Mater. Eng. Perform. 32(9), 4124–4137 (2022)

    Article  Google Scholar 

  17. X. Xiao, Z.Y. Zhou, C. Liu, L.F. Cao, Microstructure and Its effect on the intergranular corrosion properties of 2024-T3 aluminum alloy. Crystals 12(3), 395 (2022)

    Article  CAS  Google Scholar 

  18. J.A. DeRose, T. Suter, A. Balkowiec, J. Michalski, K.J. Kurzydlowski, P. Schmutz, Localised corrosion initiation and microstructural characterisation of an Al 2024 alloy with a higher Cu to Mg ratio. Corros. Sci. 55, 313–325 (2012)

    Article  CAS  Google Scholar 

  19. M. Ebrahimi, B. Rajabifar, F. Djavanroodi, New approaches to optimize strain behavior of Al6082 during equal channel angular pressing. J. Strain Anal. Eng. Des. 48, 395–404 (2013)

    Article  Google Scholar 

  20. K. Tevfik, Effect of equal-channel angular extrusion on mechanical and wear properties of eutectic Al-12Si alloy. Mater. Des. 31, 782–789 (2010)

    Article  Google Scholar 

  21. I.A.E.A. Mohamed, 3D FEM simulations and experimental validation of plastic deformation of pure aluminum deformed by ECAP and combination of ECAP and direct extrusion. Trans. Nonferrous Met. Soc. China 27, 1338–1352 (2017)

    Article  Google Scholar 

  22. L. Tang, X.Y. Peng, F.Q. Jiang, Y. Li, G.F. Xu, Strong and ductile Al–Zn–Mg–Zr alloy obtained by equal angular pressing and subsequent aging. Trans. Nonferrous Met. Soc. China 32, 1428–1441 (2022)

    Article  CAS  Google Scholar 

  23. P.X. Zhang, W.M. Xu, M. Zeng, Y.S. Lei, H. Yan, Regulating microstructure, mechanical properties and electrochemical characteristic of 2024-CNTs aluminum composites via decorating nano Ni on the surface of CNTs. Diamond Relat. Mater. 126, 109132 (2022)

    Article  CAS  Google Scholar 

  24. K.B. Deshpande, Numerical modeling of micro-galvanic corrosion. Electrochim. Acta 56, 1737–1745 (2011)

    Article  CAS  Google Scholar 

  25. J.T. Wang, Y.K. Zhang, J.F. Chen, J.Y. Zhou, M.Z. Ge, Y.L. Lu, X.L. Li, Effects of laser shock peening on stress corrosion behavior of 7075 aluminum alloy laser welded joints. Mater. Sci. Eng. A 647, 7–14 (2015)

    Article  CAS  Google Scholar 

  26. B.S. Fromm, B.L. Adams, S. Ahmadi, M. Knezevic, Grain size and orientation distributions: application to yielding of alpha-titanium. Acta Mater. 57, 2339–2348 (2009)

    Article  CAS  Google Scholar 

  27. G.K. Williamson, R.E. Smallman, Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum. Philos. Mag. 1, 34–46 (1956)

    Article  CAS  Google Scholar 

  28. F.Q. Jiang, L. Tang, J.W. Huang, Y.H. Ca, Z.M. Yin, Influence of equal channel angular pressing on the evolution of microstructures, aging behavior and mechanical properties of as-quenched Al–6.6Zn–1.25Mg alloy. Mater. Charact. 153, 1–13 (2019)

    Article  CAS  Google Scholar 

  29. T.H. Hu, H.W. Shi, D.G. Hou, T. Wei, S.H. Fan, F.C. Liu, E.H. Han, A localized approach to study corrosion inhibition of intermetallic phases of AA 2024–T3 by cerium malate. Appl. Surf. Sci. 467, 1011–1032 (2019)

    Article  Google Scholar 

  30. T.C. Silva, A.S. Barros, J.C. Filho, A.L. Moreira, Study of electrochemical corrosion in samples of a horizontally solidified AlCuSi alloy. Int. J. Metalcast. 16, 1191–1205 (2022)

    Article  CAS  Google Scholar 

  31. Y. Chen, H. Yan, K.Z. Ji et al., Effect of ultrasonic treatment during solidification on corrosion behavior of Mg–3Al–1Zn and Mg–4Zn Magnesium Alloys. J. Electrochem. Soc. 167, 161505 (2020)

    Article  CAS  Google Scholar 

  32. Y.C. Zou, H. Yan, Z. Hu, Q.W. Ran, Effect of (Pr+Ce) addition and T6 heat treatment on microhardness and corrosion of AlSi5Cu1Mg alloy. J. Mater. Res. Express 7(2), 026526 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the national natural science foundation of China (No. 51965040).

Author information

Authors and Affiliations

Authors

Contributions

SZ and PZ contributed equally to this work: conception, experimental design, carrying out measurements and manuscript composition. WX: Carrying out measurements. HY: Supervision, Funding acquisition, Methodology.

Corresponding author

Correspondence to Hong Yan.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Zhang, P., Xu, W. et al. Effect of ECAP on Mechanical Properties and Corrosion Resistance of 2024-CNTs@Ni Composite. Met. Mater. Int. 30, 1407–1423 (2024). https://doi.org/10.1007/s12540-023-01566-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-023-01566-9

Keywords

Navigation