Skip to main content

Advertisement

Log in

Synergistic impact of multiwalled carbon nanotubes on the properties of Ni-Mo thin-film via electrodeposition technique

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Carbon nanotubes (CNTs) are the hardest and strongest materials due to their perfect mechanical properties and excellent chemical, electrical, and thermal characteristics. Therefore, CNTs are attractive candidates for the development of innovative multifunctional nanocomposites. The goal of the study was to synthesize and characterize NiMoCNT nanocomposite coatings onto steel substrates by electrodeposition technique to enhance the properties of the NiMo layer coating. The electrodeposition was carried out galvanostatically, and the percentage of MWCNT (wt%) in the composites was investigated under various working circumstances, including current density, pH, temperature, and CNTs concentration in the electroplating bath. Different techniques, such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and energy dispersive X-ray analysis (EDS), were used for the composite characterization. Moreover, the corrosion resistance and the nanocomposites’ mechanical characteristics were investigated. The results of the NiMo alloy show that the enhancement in current density decreases the Mo content from 41.8 wt% (at 3.5×10−2 Acm−2) to 31.06 wt% (at 6.5×10−2 Acm−2). On the other hand, the results proved that as the concentration of CNTs in the bath increases, the wt% of CNTs co-deposited in the NiMo matrix enhances, peaking at 22.36 wt% at 0.03 gL−1. Furthermore, the findings show that the Mo content of the coating is reduced when CNTs are present. In comparison to a NiMo coating without CNTs, the composite incorporating CNTs exhibits better corrosion resistance. In addition, the mechanical properties show that the microhardness of NiMoCNT composite-coated steel is better than that of NiMo, and the highest microhardness of NiMoCNT composite coated steel was 4.69 GPa, while pure NiMo coated steel had a microhardness of 2.37 GPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. V. Ferreira, W. Franceschi, B. R. C. Menezes, A. F. Biagioni, A. R. Coutinho and L. S. Cividanes, Synthesis, characterization, and applications of carbon nanotubes, Elsevier Inc. (2018).

  2. Z. Yang, H. Xu, Y. L. Shi, M. K. Li, Y. Huang and H. L. Li, Mater. Res. Bull., 40(6), 1001 (2005).

    Article  CAS  Google Scholar 

  3. L. Shi, C. F. Sun, P. Gao, F. Zhou and W. M. Liu, Surf. Coat. Technol., 200(16–17), 4870 (2006).

    Article  CAS  Google Scholar 

  4. C. Guo, Y. Zuo, X. Zhao, J. Zhao and J. Xiong, Surf. Coat. Technol., 201(24), 9491 (2007).

    Article  CAS  Google Scholar 

  5. W. Fan, Graphene-carbon nanotube hybrids for energy and environmental applications-springer briefs in molecular science, Springer Verlag, Singapore (2017).

    Book  Google Scholar 

  6. V. N. Popov, Mater. Sci. Eng. R Rep., 43(3), 61 (2004).

    Article  Google Scholar 

  7. A. Wang, X. Chen, L. Cheng, X. Shen, W. Zhu, L. Lia and J. Pang, J. Mater. Chem. A, 8(34), 17621 (2020).

    Article  CAS  Google Scholar 

  8. S. S. Karade, A. S. Nimbalkar, J. H. Eum and H. Kim, RSC Adv., 10(66), 40092 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. A. Zarebidaki and S. R. Allahkaram, J. Alloys Compd., 509(5), 1836 (2011).

    Article  CAS  Google Scholar 

  10. A. Esawi and K. Morsi, Compos. Part A Appl. Sci. Manuf., 38(2), 646 (2007).

    Article  Google Scholar 

  11. S. Tailor, R. Mohanty and P. Soni, J. Mater. Sci. Surf. Eng., 1(1), 15 (2013).

    Google Scholar 

  12. J. Martinsen, R. A. Figat and M. W. Shafer, MRS Online Proc. Library, 32, 145 (1984).

    Article  CAS  Google Scholar 

  13. Z. A. Hamid and R. A. El-Adly, Plat. Surf. Finish., 86(5), 136 (1999).

    CAS  Google Scholar 

  14. Z. A. Hamid, Surf. Interface Anal., 35(6), 496 (2003).

    Article  Google Scholar 

  15. A. R. Barron and M. R. Khan, Adv. Mater. Process., 166(10), 41 (2008).

    CAS  Google Scholar 

  16. Z. Abdel Hamid, M. Refai, R. M. El-kilani and G. E. M. Nasr, J. Mater. Sci., 56(25), 14096 (2021).

    Article  CAS  Google Scholar 

  17. M. Refai, Z. Abdel Hamid, R. M. El-kilani and G. E. M. Nasr, J. Mater. Eng. Perform., 30(3), 1851 (2021).

    Article  CAS  Google Scholar 

  18. M. Refai, Z. A. Hamid, R. M. El-kilani and G. E. M. Nasr, Chem. Pap., 75, 139 (2021).

    Article  CAS  Google Scholar 

  19. N. F. El Boraei and M. A. M. Ibrahim, Mater. Chem. Phys., 285, 126138 (2022).

    Article  CAS  Google Scholar 

  20. C. M. P. Kumar, A. Lakshmikanthan, M. P. G. Chandrashekarappa, D. Y. Pimenov and K. Giasin, Coatings, 11, 712 (2021).

    Article  CAS  Google Scholar 

  21. Z. A. Hamid, A. Y. El-Etre and M. Fareed, Anti-Corrosion Methods Mater., 64(3), 315 (2017).

    Article  Google Scholar 

  22. Z. Abdel Hamid, H. B. Hassan and M. Sultan, Anti-Corrosion Methods Mater., 67(1), 38 (2020).

    Article  CAS  Google Scholar 

  23. J. Kubisztal, A. Budniok and A. Lasia, Int. J. Hydrogen Energy, 32(9), 1211 (2007).

    Article  CAS  Google Scholar 

  24. W.-F. Chen, K. Sasaki, C. Ma, A. I. Frenkel, N. Marinkovic, J. T. Muckerman, Y. Zhu and R. R. Adzic, Angew. Chem. — Int. Ed., 51(25), 6131 (2012).

    Article  CAS  Google Scholar 

  25. N. F. El Boraei and M. A. M. Ibrahim, Surf. Coat. Technol., 347, 113 (2018).

    Article  CAS  Google Scholar 

  26. J. H. Liu, J. X. Yan, Z. L. Pei, J. Gong and C. Sun, Surf. Coat. Technol., 404, 126476 (2020).

    Article  CAS  Google Scholar 

  27. E. Beltowska-Lehman and P. Indyka, Thin Solid Films, 520(6), 2046 (2012).

    Article  CAS  Google Scholar 

  28. M. Donten, H. Cesiulis and Z. Stojek, Electrochim. Acta, 50(6), 1405 (2005).

    Article  CAS  Google Scholar 

  29. A. P. Grosvenor, M. C. Biesinger, R. S. C. Smart and N. S. McIntyre, Surf. Sci., 600(9), 1771 (2006).

    Article  CAS  Google Scholar 

  30. M. A. M. Ibrahim, J. Appl. Electrochem., 36(3), 295 (2006).

    Article  CAS  Google Scholar 

  31. N. F. El Boraei, M. A. M. Ibrahim and M. A. Naghmash, J. Phys. Chem. Solids, 167, 110714 (2022).

    Article  CAS  Google Scholar 

  32. M. Schlesinger and M. Paunovic, Modern electroplating fifth edition, Fifth Edit. NY: Ajohn Wiley&sons, Inc., Publication (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeinab Abdel Hamid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomaa, M.H., Hamid, Z.A., Ibrahim, M.A.M. et al. Synergistic impact of multiwalled carbon nanotubes on the properties of Ni-Mo thin-film via electrodeposition technique. Korean J. Chem. Eng. 40, 1186–1196 (2023). https://doi.org/10.1007/s11814-022-1299-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1299-5

Keywords

Navigation