Skip to main content
Log in

Non-Destructive Evaluation of the AISI 304 Stainless Steel Susceptibility to Intergranular Corrosion by Electrical Conductivity Measurements

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

This paper examined the degree of sensitization (DOS) to intergranular corrosion (IGC) and the level of electrical conductivity of the welded and non-welded AISI 304 stainless steel to obtain a suitable correlation. The DOS was determined by the double loop electrochemical potentiokinetic reactivation method (DL EPR), while the level of electrical conductivity was measured using a commercial device (non-destructive method). After electrochemical etching in oxalic acid, the microstructure of the specimen surface was analyzed by scanning electron microscopy (SEM). At DOS greater than ~ 0.5%, a clear linear dependence between the electrical conductivity and the value of the DOS was obtained, while there was a higher deviation from linearity for lower DOS values. The mentioned correlations were discussed in the sense of the precipitation kinetics of the Cr-carbide and the formation of Cr-depleted areas of different levels near the grain boundaries. Cr-depleted areas during anodic polarization measurements show lower resistance to pit formation. The presence of Cr-depleted areas in the vicinity of grain boundaries and the reduction of carbon content in the austenite crystal lattice increases the electrical conductivity of the stainless steel.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. K.H. Lo, C.H. Shek, J.K.L. Lai, Mater. Sci. Eng. R 65, 39 (2009). https://doi.org/10.1016/j.mser.2009.03.001

    Article  CAS  Google Scholar 

  2. K. Kaneko, T. Fukunaga, K. Yamada, N. Nakada, M. Kikuchi, Z. Saghi, J.S. Barnard, P.A. Midgley, Scripta Mater. 65, 509 (2011). https://doi.org/10.1016/j.scriptamat.2011.06.010

    Article  CAS  Google Scholar 

  3. M.A. Streicher (Revised by J.F. Grubb), in Uhlig’s Corrosion Handbook, ed. by R.W. Revie (John Wiley & Sons, Inc., New Jersey, 2011), p. 657

  4. N. Parvathavarthini, in Corrosion of Austenitic Stainless Steels, ed. by H.S. Khatak, B. Raj (Woodhead Publishing, Cambridge, 2002), p. 117. https://doi.org/10.1533/9780857094018.139

  5. E.E. Stansbury, R.A. Buchanan, Fundamentals of Electrochemical Corrosion (ASM International, Materials Park, Ohio, USA, 2000), p.340

    Book  Google Scholar 

  6. R.A. Jarman, in Corrosion, ed. by L.L. Shreir, R.A. Jarman, G.T. Burstein (Butterworth-Heinemann, Oxford, 2000) p. 9:85

  7. C.C. Irechukwu, R.H. Khan, J. Abutu, S.A. Lawal, N.O. Namessan, Weld. Int. 35, 45 (2021). https://doi.org/10.1080/09507116.2021.1958660

    Article  Google Scholar 

  8. A. Roy, N. Ghosh, S. Mondal, Weld. Int. 37, 91 (2023). https://doi.org/10.1080/09507116.2023.2185169

    Article  Google Scholar 

  9. G.Y. Koga, T. Ferreira, A.P. de Bribean Guerra, D. Cunha, J.G.G. Wiezel, C. Bolfarini, J. Mater. Process. Tech. 303, 117524 (2022). https://doi.org/10.1016/j.jmatprotec.2022.117524

    Article  CAS  Google Scholar 

  10. J. Li, H. Li, Y. Liang, P. Liu, L. Yang, Y. Wang, Corros. Sci. 166, 108445 (2020). https://doi.org/10.1016/j.corsci.2020.108445

    Article  CAS  Google Scholar 

  11. G. George, H. Shaikh, in Corrosion of Austenitic Stainless Steels, ed. by H.S. Khatak, B. Raj (Woodhead Publishing, Cambridge, 2002), p. 1. https://doi.org/10.1533/9780857094018.37

  12. R. Pascali, A. Benvenuti, D. Wenger, Corrosion 40, 21 (1984). https://doi.org/10.5006/1.3579291

    Article  CAS  Google Scholar 

  13. D.L. Engelberg, in Shreir’s Corrosion, ed. by B. Cottis, M. Graham, R. Lindsay, S. Lyon, T. Richardson, D. Scantlebury, H. Stott (Academic Press, London, 2011), p. 810

  14. V. Randle, Mater. Sci. Technol. 26, 253 (2010). https://doi.org/10.1179/026708309X12601952777747

    Article  ADS  CAS  Google Scholar 

  15. G. Shit, K. Mariappan, S. Ningshen, Corros. Sci. 213, 110975 (2023). https://doi.org/10.1016/j.corsci.2023.110975

    Article  CAS  Google Scholar 

  16. M. Zhao, T. Liu, L. Du, H. Wu, Corrosion 79, 449 (2023). https://doi.org/10.5006/4204

    Article  Google Scholar 

  17. P. He, X. Wang, K. Zheng, Y. Jiang, J. Li, Y. Sun, Corros. Sci. 219, 111258 (2023). https://doi.org/10.1016/j.corsci.2023.111258

    Article  CAS  Google Scholar 

  18. S. Yao, H. Zhang, F. Ma, P. Liu, L. Song, W. Li, K. Zhang, X. Chen, J. Mater. Res. Technol. 25, 13 (2023). https://doi.org/10.1016/j.jmrt.2023.05.175

    Article  CAS  Google Scholar 

  19. W. Feng, Z. Wang, Q. Sun, Y. He, Y. Sun, J. Mater. Res. Technol. 19, 2470 (2022). https://doi.org/10.1016/j.jmrt.2022.06.032

    Article  CAS  Google Scholar 

  20. A.Y. Chen, W.F. Hu, D. Wang, Y.K. Zhu, P. Wang, J.H. Yang, X.Y. Wang, J.F. Gu, J. Lu, Scripta Mater. 130, 264 (2017). https://doi.org/10.1016/j.scriptamat.2016.11.032

    Article  CAS  Google Scholar 

  21. S. Tokita, H. Kokawa, S. Kodama, Y.S. Sato, Y. Sano, Z. Li, K. Feng, Y. Wu, Mater. Today Commun. 25, 101572 (2020). https://doi.org/10.1016/j.mtcomm.2020.101572

    Article  CAS  Google Scholar 

  22. Z. Wang, F. Gao, S. Tang, P. Zhou, W. Zhang, Z. Liu, Corros. Sci. 209, 110791 (2022). https://doi.org/10.1016/j.corsci.2022.110791

    Article  CAS  Google Scholar 

  23. T. Fujii, M. Suzuki, Y. Shimamura, Corros. Sci. 195, 109946 (2022). https://doi.org/10.1016/j.corsci.2021.109946

    Article  CAS  Google Scholar 

  24. T. Fujii, T. Furumoto, K. Tohgo, Y. Shimamura, Materials 13, 613 (2020). https://doi.org/10.3390/ma13030613

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. M. Rostami, R. Miresmaeili, A.H. Astaraee, Met. Mater. Int. 29, 948 (2023). https://doi.org/10.1007/s12540-022-01286-6

    Article  CAS  Google Scholar 

  26. M. Amirnejad, M. Rajabi, R. Jamaati, Met. Mater. Int. 29, 343 (2023). https://doi.org/10.1007/s12540-022-01234-4

    Article  CAS  Google Scholar 

  27. P. McIntyre, A.D. Mercer, in Corrosion, ed. by L.L. Shreir, R.A. Jarman, G.T. Burstein (Butterworth-Heinemann, Oxford, 2000), p. 19.57

  28. M.A. Streicher, in Intergranular Corrosion of Stainless Alloys, ed. by R.F. Steigerwald (ASTM STP 656, American Society for Testing and Materials, Philadelphia, 1978), p. 3. https://doi.org/10.1520/STP656-EB

  29. Corrosion of Metals and Alloys: Method of oxalic acid etching test for intergranular corrosion of austenitic stainless steel, ISO 4212:2023

  30. Standard Practices for Detecting Susceptibility to Intergranular Attack in Austenitic Stainless Steels, ASTM A262 (2015). https://doi.org/10.1520/A0262-15.

  31. A.P. Majidi, M.A. Streicher, Corros. NACE 40, 393 (1984). https://doi.org/10.5006/1.3593944

    Article  CAS  Google Scholar 

  32. A.P. Majidi, M.A. Straicher, Corros. NACE 40, 445 (1984). https://doi.org/10.5006/1.3577915

    Article  CAS  Google Scholar 

  33. Electrochemical Reactivation (EPR) for Detecting Sensitization of AISI Type 304 and 304L Stainless Steels, ASTM G108 (2015). https://doi.org/10.1520/G0108-94R15.

  34. Electrochemical potentiokinetic reactivation measurement using the double loop method (based on Čihal´s method), ISO 12732:2006

  35. A.P. Majidi, M.A. Streicher, Corros. NACE 40, 584 (1984). https://doi.org/10.5006/1.3581921

    Article  CAS  Google Scholar 

  36. V. Čihal, S. Lasek, M. Blahetova, E. Kalabisova, Z. Krhutova, Chem. Biochem. Eng. Q. 21, 47 (2007). https://hrcak.srce.hr/10564

    Google Scholar 

  37. V. Moura, Y.A. Kina, S.S.M. Tavares, M.M.S.G. de Faria, F.B. Mainier, Eng. Fail. Anal. 16, 545 (2009). https://doi.org/10.1016/j.engfailanal.2008.02.002

    Article  CAS  Google Scholar 

  38. S. Kim, G. Kim, Oh. Chang-Young, S. Song, Met. Mater. Int. 28, 2448 (2022). https://doi.org/10.1007/s12540-021-01149-6

    Article  CAS  Google Scholar 

  39. N. Alonso-Falleiros, M. Magri, I.G.S. Falleiros, Corrosion 55, 769 (1999). https://doi.org/10.5006/1.3284032

    Article  CAS  Google Scholar 

  40. H. Sidhom, T. Amadou, C. Braham, Metal. Mater. Trans. A 41A, 3136 (2010). https://doi.org/10.1007/s11661-010-0383-3

    Article  CAS  Google Scholar 

  41. J. Gong, Y.M. Jiang, B. Deng, J.L. Xu, J.P. Hu, J. Li, Electrochim. Acta 55, 5077 (2010). https://doi.org/10.1016/j.electacta.2010.03.086

    Article  CAS  Google Scholar 

  42. A. Abou-Elazm, R. Abdel-Karim, I. Elmahallawi, R. Rashad, Corros. Sci. 51, 203 (2009). https://doi.org/10.1016/j.corsci.2008.10.015

    Article  CAS  Google Scholar 

  43. D.N. Wasnik, G.K. Dey, V. Kain, I. Samajdar, Scripta Mater. 49, 135 (2003). https://doi.org/10.1016/S1359-6462(03)00220-3

    Article  CAS  Google Scholar 

  44. R.C. Mesquita, J.M.R. Mecury, A.A. Tanaka, R.C. de Sousa, Mater. Res. 18, 341 (2015). https://doi.org/10.1590/1516-1439.308714

    Article  Google Scholar 

  45. H. Shaikh, N. Sivaibharasi, B. Sasi, T. Anita, R. Amirthalingam, B.P.C. Rao, T. Jayakumar, H.S. Khatak, B. Raj, Corros. Sci. 48, 1462 (2006). https://doi.org/10.1016/j.corsci.2005.05.017

    Article  CAS  Google Scholar 

  46. Y. Kelidari, M. Kashefi, M. Mirjalili, M. Seyedi, T.W. Krause, Corros. Sci. 173, 108742 (2020). https://doi.org/10.1016/j.corsci.2020.108742

    Article  CAS  Google Scholar 

  47. C. Doerr, J.Y. Kim, P. Singh, J.J. Wall, L.J. Jacobs, NDT E Int. 88, 17 (2017). https://doi.org/10.1016/j.ndteint.2017.02.007

    Article  CAS  Google Scholar 

  48. O. Pedram, Y. Mollapour, H. Shayani-jam, E. Poursaeidi, R. Khamedi, Met. Mater. Int. 27, 4346 (2021). https://doi.org/10.1007/s12540-020-00640-w

    Article  CAS  Google Scholar 

  49. T. Prošek, P. Novak, J. Bystriansky, Mater. Corros. 56, 312 (2005). https://doi.org/10.1002/maco.200403839

    Article  CAS  Google Scholar 

  50. J.R. Davis, in Corrosion of Weldments, ed. by J.R. Davis (ASM International, Materials Park, Ohio, 2006), p. 43. https://doi.org/10.1361/corw2006p043

  51. Welding—fusion-welded joints in steel, nickel, titanium and their alloys (beam welding excluded)—Quality levels for imperfections, ISO 5817:2014

  52. R. Wang, Z. Zheng, Q. Zhou, Y. Gao, Corros. Sci. 111, 728 (2016). https://doi.org/10.1016/j.corsci.2016.06.012

    Article  CAS  Google Scholar 

  53. A.Y. Kina, V.M. Souza, S.S.M. Tavares, J.M. Pardal, J.A. Souza, Mater. Charact. 59, 651 (2008). https://doi.org/10.1016/j.matchar.2007.04.004

    Article  CAS  Google Scholar 

  54. R.S. Graves, T.G. Kollie, D.L. McElroy, K.E. Gilchrist, Int. J. Thermophys. 12, 409 (1991). https://doi.org/10.1007/BF00500761

    Article  ADS  CAS  Google Scholar 

  55. Steels-Micrographic determination of the apparent grain size, ISO 643:2003

  56. Outokumpu Stainless AB, Avesta Research Centre, Handbook on Stainless Steel (Outokumpu Oyj, Finland, 2013), p. 55

  57. C.Y. Ho, T.K. Chu, Electrical resistivity and thermal conductivity of nine selected AISI stainless steels, Cindas Report 45, (American Iron and Steel Institute, 1977), p.3

  58. M. Penyaz, J.L. Otto, N. Popov, A. Ivannikov, A. Schmiedt-Kalenborn, F. Walther, B. Kalin, Met. Mater. Int. 27, 4142 (2021). https://doi.org/10.1007/s12540-021-00974-z

    Article  CAS  Google Scholar 

  59. L.R. Bairi, D. Bairagi, P. Duley, S. Mandal, Met. Mater. Int. 29, 1923 (2023). https://doi.org/10.1007/s12540-022-01342-1

    Article  CAS  Google Scholar 

  60. J. Soltis, Corros. Sci. 90, 5 (2015). https://doi.org/10.1016/j.corsci.2014.10.006

    Article  CAS  Google Scholar 

  61. G.S. Frankel, J. Electrochem. Soc. 145, 2186 (1998). https://doi.org/10.1149/1.1838615

    Article  ADS  CAS  Google Scholar 

  62. A. Chiba, I. Muto, Y. Sugawara, N. Hara, J. Electrochem. Soc. 160, C511 (2013). https://doi.org/10.1149/2.081310jes

    Article  CAS  Google Scholar 

  63. N. Ida, I. Muto, Y. Sugawara, N. Hara, J. Electrochem. Soc. 164, C779 (2017). https://doi.org/10.1149/2.1011713jes

    Article  CAS  Google Scholar 

  64. S. Tokuda, I. Muto, Y. Sugawara, N. Hara, Corros. Sci. 167, 108506 (2020). https://doi.org/10.1016/j.corsci.2020.108506

    Article  CAS  Google Scholar 

  65. S. Tokuda, I. Muto, Y. Sugawara, N. Hara, J. Electrochem. Soc. 168, 091504 (2021). https://doi.org/10.1149/1945-7111/ac28c6

    Article  ADS  CAS  Google Scholar 

  66. J.R. Galvele, J. Electrochem. Soc. 123, 464 (1976). https://doi.org/10.1149/1.2132857

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant No. 451-03-47/2023-01/200026 and 451-03-47/2023-01/200135).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bojana M. Radojković.

Ethics declarations

Conflict of interest

The authors have no financial or proprietary interests in any material discussed in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4105 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radojković, B.M., Jegdić, B.V., Marunkić, D.D. et al. Non-Destructive Evaluation of the AISI 304 Stainless Steel Susceptibility to Intergranular Corrosion by Electrical Conductivity Measurements. Met. Mater. Int. 30, 682–696 (2024). https://doi.org/10.1007/s12540-023-01536-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-023-01536-1

Keywords

Navigation