Skip to main content
Log in

Laser Peening: A Review of the Factors, Effects, Applications, Comparison with Shot Peening and State-of-the-Art

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The laser is used in several classic mechanical applications, such as: cutting, welding, surface treatments, etc. In the same way, laser shock peening (LSP) is an innovative surface treatment that exploits the mechanical effect of the application of pulsed laser radiation. Consequently, this generates work hardening and plastic deformation in depth. This process is implemented in different mechanical fields such as: defence, automotive, micro electromechanical systems, mechanical engineering and more particularly aeronautics. This review paper presents a generality on the LSP treatment and some of its applications. The factors of this process are displayed. Moreover, this study discusses the effects of laser shock peening on the mechanical and metallurgical properties, surface roughness, damage, and fatigue resistance of treated parts. A comparison between the LSP process and the shot peening is also exposed. As well, the various existing analytical and numerical models which allow the prediction of induced effects are analysed and compared. Moreover, the challenges and the limitations of the LSP treatment are highlighted.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

Data Availability

The data and the code used for this work are available and can be obtained by contacting the authors.

References

  1. P. Peyre, R. Fabbro, Opt. Quant. Electron. 27, 1213–1229 (1995). https://doi.org/10.1007/BF00326477

    Article  Google Scholar 

  2. R. Fabbro, P. Peyre, L. Berthe, X. Scherpereel, J. Laser Appl. 10, 265–279 (1998). https://doi.org/10.2351/1.521861

    Article  Google Scholar 

  3. C.S. Montross, T. Wei, L. Ye, G. Clark, Y.-W. Mai, Int. J. Fatigue 24, 1021–1036 (2002). https://doi.org/10.1016/S0142-1123(02)00022-1

    Article  Google Scholar 

  4. J.L. Hu, J. Lon, H.C. Sheng, S.H. Wu, G.X. Chen, K.F. Huang, L. Ye, Z.K. Liu, Y.L. Shi, S. Yin, Adv. Mater. Res. 347-353, 1596–1604 (2011). https://doi.org/10.4028/www.scientific.net/AMR.347-353.1596

    Article  Google Scholar 

  5. P.P. Shuckla, P.T. Swanson, C.J. Page, Proc. Inst. Mech. Eng. B J. Eng. Manuf. 228, 639–652 (2013). https://doi.org/10.1177/0954405413507250

    Article  Google Scholar 

  6. Sundar R., Ganesh P., R.K. Gupta, Ragvendra G., B.K. Pant, V. Kain, Ranganathan K., R. Kaul, K.S. Bindra, Lasers Manuf. Mater. Process. 6, 424–463 (2019). https://doi.org/10.1007/s40516-019-00098-8

    Article  Google Scholar 

  7. A.H. Clauer, Metals 9, 626 (2019). https://doi.org/10.3390/met9060626

    Article  Google Scholar 

  8. J. Wu, J. Zhao, H. Qiao, X. Hu, Y. Yang, Mater. Today Proc. 44, 722–731 (2020). https://doi.org/10.1016/j.matpr.2020.10.618

    Article  Google Scholar 

  9. C. Zhang, Y. Dong, C. Ye, Adv. Eng. Mater. 23, 2001216 (2021). https://doi.org/10.1002/adem.202001216

    Article  Google Scholar 

  10. A. Rondepierre, A. Sollier, L. Videau, L. Berthe, Metals 11, 2032 (2021). https://doi.org/10.3390/met11122032

    Article  Google Scholar 

  11. W.M. Steen, Laser Materials Processing (Springer, London, 1991)

    Book  Google Scholar 

  12. F. Dausinger, H. Lubatschowski, F. Lichtner (eds.), Femtosecond Technology for Technical and Medical Applications (Springer, Berlin, 2004)

    Book  Google Scholar 

  13. J.C. Ion, Laser Processing of Engineering Materials: Principles, Procedures and Industrial Applications (Butterworth-Heinemann, Oxford, 2005)

    Google Scholar 

  14. H.R. Mattern, Laser peening for mitigation of stress corrosion cracking at welds in marine aluminum, Master’s Thesis, Naval Postgraduate School (2011)

  15. O. Hatamleh, Int. J. Fatigue 31, 974–988 (2009). https://doi.org/10.1016/j.ijfatigue.2008.03.029

    Article  Google Scholar 

  16. K. Eisner, Prozesstechnologische Grundlagen zur Schockverfestigung von metallischen Werkstoffen mit einem kommerziellen Excimerlaser, Dissertation, Universität Erlangen (1998)

  17. R. Fabbro, J. Fournier, P. Ballard, D. Devaux, J. Virmont, J. Appl. Phys. 68, 775–784 (1990). https://doi.org/10.1063/1.346783

    Article  Google Scholar 

  18. B.P. Fairand, A.H. Clauer, R.G. Jung, B.A. Wilcox, Appl. Phys. Lett. 25, 431–433 (1974). https://doi.org/10.1063/1.1655536

    Article  Google Scholar 

  19. B.P. Fairand, A.H. Clauer, J. Appl. Phys. 50, 1497–1502 (1979). https://doi.org/10.1063/1.326137

    Article  Google Scholar 

  20. K. Ding, L. Ye, Laser Shock Peening: Performance and Process Simulation (Woodhead Publishing, Sawston, 2006)

    Book  Google Scholar 

  21. J.-E. Masse, G. Barreau, Surf. Coat. Tech. 70, 231–234 (1995). https://doi.org/10.1016/0257-8972(95)80020-4

    Article  Google Scholar 

  22. Y. Hu, Z. Yao, J. Hu, Surf. Coat. Tech. 201, 1426–1435 (2006). https://doi.org/10.1016/j.surfcoat.2006.02.018

    Article  Google Scholar 

  23. L. Berthe, R. Fabbro, P. Peyre, E. Bartnicki, Proc. SPIE 3097, 570–575 (1997). https://doi.org/10.1117/12.281117

  24. Y. Sano, Metals 10, 152 (2020). https://doi.org/10.3390/met10010152

    Article  Google Scholar 

  25. Y. Sano, N. Mukai, K. Okazaki, M. Obata, Nucl. Instrum. Methods Phys. Res. B 121, 432–436 (1997). https://doi.org/10.1016/S0168-583X(96)00551-4

    Article  Google Scholar 

  26. J.P. Chu, J.M. Rigsbee, G. Banas, H.E. Elsayed-Ali, Mater. Sci. Eng. A 260, 260–268 (1999). https://doi.org/10.1016/S0921-5093(98)00889-2

    Article  Google Scholar 

  27. A.H. Clauer, B.P. Fairand, B.A. Wilcox, Metall. Mater. Trans. A 8, 1871–1876 (1977). https://doi.org/10.1007/BF02646559

    Article  Google Scholar 

  28. I. Yakimets, C. Richard, G. Beranger, P. Peyre, Wear 256, 311–320 (2004). https://doi.org/10.1016/S0043-1648(03)00405-8

    Article  Google Scholar 

  29. Y.K. Zhang, X.D. Ren, J.Z. Zhou, J.Z. Lu, L.C. Zhou, Mater. Des. 30, 2769–2773 (2009). https://doi.org/10.1016/j.matdes.2008.09.033

    Article  CAS  Google Scholar 

  30. J.J. Ruschau, R. John, S.R. Thompson, T. Nicholas, J. Mater. Sci. Technol. 121, 321–329 (1999). https://doi.org/10.1115/1.2812381

    Article  Google Scholar 

  31. P. Peyre, R. Fabbro, P. Merrien, H.P. Lieurade, Mater. Sci. Eng. A 210, 102–113 (1996). https://doi.org/10.1016/0921-5093(95)10084-9

    Article  Google Scholar 

  32. C.B. Dane, L.A. Hackel, J. Daly, J. Harrisson, High power laser for peening of metals enabling production technology, in Proceedings of the Advanced Aerospace Materials and Processes Conference ‘98, Tysons Corner, Virginia, 15–18 June 1998

  33. A.H. Clauer, B.P. Fairand, Interaction of laser-induced stress waves with metals, in Proceedings of the Applications of Laser Material Processing, ed by E.A. Metzbower. Washington, D.C., 18–20 April 1979 (American Society for Metals, Materials Park, 1979)

  34. A.H. Clauer, J.H. Holbrook, B.P. Fairand, Effects of laser induced shock waves on metals, in Shock Waves and High-Strain-Rate Phenomena in Metals (Plenum Press, New York, 1981), pp. 675–703

  35. F. Fouquet, L. Renaud, J. Millet, H. Mazille, J. Phys. IV France 1, C7-69-C7-72 (1991). https://doi.org/10.1051/jp4:1991715

    Article  Google Scholar 

  36. P. Peyre, C. Braham, J. Ledion, L. Berthe, R. Fabbro, J. Mater. Eng. Perform. 9, 656–662 (2000). https://doi.org/10.1361/105994900770345520

    Article  CAS  Google Scholar 

  37. A.H. Clauer, D.F. Lahrman, Key Eng. Mater. 197, 121–144 (2001). https://doi.org/10.4028/www.scientific.net/KEM.197.121

    Article  Google Scholar 

  38. P. Ballard, J. Fournier, R. Fabbro, J. Frelat, J. Phys. IV France 1, C3-487 - C3-494 (1991). https://doi.org/10.1051/jp4:1991369

    Article  Google Scholar 

  39. P. Ballard, Contraintes résiduelles induites par impact rapide. Application au choc laser., Ph.D. Thesis , Ecole Polytechnique (1991)

  40. P. Forget, M.J. Jeandin, J. Phys. III France 5, 1133–1144 (1995). https://doi.org/10.1051/jp3:1995181

    Article  Google Scholar 

  41. W. Braisted, R. Brockman, Int. J. Fatigue 21, 719–724 (1999). https://doi.org/10.1016/S0142-1123(99)00035-3

    Article  Google Scholar 

  42. T. Nam, Finite element analysis of residual stress field induced by lasershock peening. Ph.D. Thesis , The Ohio State University (2002)

  43. K. Ding, Surf. Eng. 19, 127–133 (2003). https://doi.org/10.1179/026708403225002568

    Article  Google Scholar 

  44. A.F.M.  Arif, J. Mater. Process. Technol. 136, 120–138 (2003). https://doi.org/10.1016/S0924-0136(02)01122-6

    Article  Google Scholar 

  45. J.L. Ocana, M. Morales, C. Molpeceres, J. Torres, Appl. Surf. Sci. 238, 242–248 (2004). https://doi.org/10.1016/j.apsusc.2004.05.232

    Article  Google Scholar 

  46. P. Peyre, I. Chaieb, C. Braham, Model. Simul. Mater. Sci. Eng. 15, 205 (2007). https://doi.org/10.1088/0965-0393/15/3/002

    Article  Google Scholar 

  47. Y.X. Hu, Z.Q. Yao, F. Wang, J. Hu, Surf. Eng. 23, 470–478 (2007). https://doi.org/10.1179/174329407X247208

    Article  Google Scholar 

  48. H.K. Amarchinta, R.V. Grandhi, K. Langer, D.S. Stargel, Model. Simul. Mater. Sci. Eng. 17, 015010 (2009). https://doi.org/10.1088/0965-0393/17/1/015010

    Article  Google Scholar 

  49. C. Yang, P.D. Hodgson, Q. Liu, L. Ye, J. Mater. Process. Technol. 201, 303–309 (2008). https://doi.org/10.1016/j.jmatprotec.2007.11.147

    Article  Google Scholar 

  50. M. Frija, R. Fathallah, T. Hassine, Key Eng. Mater. 417-418, 853–856 (2009). https://doi.org/10.4028/www.scientific.net/KEM.417-418.853

    Article  Google Scholar 

  51. H.K. Amarchinta, R.V. Grandhi, A.H. Clauer, K. Langer, D.S. Stargel, J. Mater. Process. Technol. 210, 1997–2006 (2010). https://doi.org/10.1016/j.jmatprotec.2010.07.015

    Article  Google Scholar 

  52. G. Singh, R.V. Grandhi, D.S. Stargel, Int. J. Comput. Methods Eng. Sci. Mech. 12, 233–253 (2011). https://doi.org/10.1080/15502287.2010.542795

    Article  Google Scholar 

  53. G. Ivetic, Surf. Eng. 27, 445–453 (2011). https://doi.org/10.1179/026708409X12490360425846

    Article  Google Scholar 

  54. R.A. Brockman, W.R. Braisted, S.E. Olson, R.D. Tenaglia, A.H. Clauer, K. Langer, M.J. Shepard, Int. J. Fatigue 36, 96–108 (2012). https://doi.org/10.1016/j.ijfatigue.2011.08.011

    Article  Google Scholar 

  55. J.H. Kim, Y.J. Kim, J.S. Kim, J. Mech. Sci. Technol. 27, 2025–2034 (2013). https://doi.org/10.1007/s12206-012-1263-0

    Article  Google Scholar 

  56. Y.W. Fang, Y.H. Li, W.F. He, P.Y. Li, Mater. Sci. Eng. A 559, 683–692 (2013). https://doi.org/10.1016/j.msea.2012.09.009h

    CAS  Google Scholar 

  57. X.L. Wei, X. Ling, Appl. Surf. Sci. 301, 557–563 (2014). https://doi.org/10.1016/j.apsusc.2014.02.128

    Article  CAS  Google Scholar 

  58. N. Hfaiedh, P. Peyre, H. Song, I. Popa, V. Ji, V. Vignal, Int. J. Fatigue 70, 480–489 (2015). https://doi.org/10.1016/j.ijfatigue.2014.05.015

    Article  Google Scholar 

  59. P. Li, S. Huang, H. Xu, Y. Li, X. Hou, Q. Wang, Y. Fang, Aerosp. Sci. Technol. 40, 164–170 (2015). https://doi.org/10.1016/J.AST.2014.10.017

    Article  Google Scholar 

  60. S. Keller, N. Kashaev, B. Klusemann, PAMM 17, 423–424 (2017). https://doi.org/10.1002/pamm.201710181

    Article  Google Scholar 

  61. P. Ouyang, L. He, P. Li, G. Mi, Effect of dual-sided laser peening modes on residual stress distribution of aero-engine titanium blades, in Advances in Materials Processing, ed. by Y. Han. CMC 2017. Lecture Notes in Mechanical Engineering (Springer, Singapore, 2018), pp. 29–45. https://doi.org/10.1007/978-981-13-0107-0_4

    Article  Google Scholar 

  62. M. Frija, M. Ayeb, R. Seddik, R. Fathallah, H. Sidhom, Int. J. Adv. Manuf. Technol. 97, 51–69 (2018). https://doi.org/10.1007/s00170-018-1849-5

    Article  Google Scholar 

  63. M. Ayeb, M. Frija, R. Fathallah, Int. J. Adv. Manuf. Technol. 100, 2455–2471 (2019). https://doi.org/10.1007/s00170-018-2883-z

    Article  Google Scholar 

  64. M. Ayeb, Développement d'un modèle de prévision de l'état induit du traitement (Editions Universitaires Europeennes EUE, Saarbrücken, 2018)

  65. M. Ayeb, M. Frija, R. Fathallah, Proc. Inst. Mech. Eng. L J. Mater. Des. Appl. 234, 130–143 (2020). https://doi.org/10.1177/1464420719873936

    Article  Google Scholar 

  66. M. Ayeb, M. Frija, R. Fathallah, Effect of multiple impacts on thin leading edges of turbine blade treated by laser shock peening process, in Design and Modeling of Mechanical Systems - IV, ed. by N. Aifaoui et al. CMSM 2019. Lecture Notes in Mechanical Engineering (Springer, Cham, 2020), pp. 498–506. https://doi.org/10.1007/978-3-030-27146-6_54

  67. M. Ayeb, M. Frija, R. Fathallah, Simulation et optimisation du procédé du grenaillage par choc laser (Editions Universitaires Europeennes EUE, Saarbrücken, 2021)

  68. W. Zhang, Y.L. Yao, I.C. Noyan, J. Manuf. Sci. Eng. 126, 10–17 (2004). https://doi.org/10.1115/1.1645878

    Article  Google Scholar 

  69. S. Mannava, A.E. McDaniel, W.D. Cowie, Laser shock peened rotor components for turbomachinery, US Patent 5492447 (1996)

  70. S. Mannava, A.E. McDaniel, W.D. Cowie, H. Halila, J.E. Rhoda, J.E. Gutknecht, Laser shock peened gas turbine engine fan blade edges, US Patent 5591009 (1997)

  71. S.J. Ferrigno, K.G. McAllister, S. Mannava, Laser shock peened gas turbine engine seal teeth, US Patent 6200689 B1 (2001)

  72. D.A. Casarcia, W.D. Cowie, S. Mannavan, Laser shock peened bearings, US Patent 5584586 (1996)

  73. D.W. Sokol, A.H. Clauer, R. Ravindranath, Applications of laser peening to titanium alloys, Presented at the ASME/JSME 2004 Pressure Vessels and Piping Division Conference. San Diego, July 25–29, 2004

  74. J. Rankin, L. Hackel, J. Harrison, Effect of laser peening on fatigue life in an arrestment hook shank application for naval aircraft, in Proceedings of the 2nd International Laser Peening Conference. San Francisco, 19–22 April 2010

  75. H. Song, Analyse expérimentale et numérique de ladistribution des contraintes résiduelles induites par choc-laser dans des alliages d’aluminium, Ph.D. Thesis, Arts et Métiers ParisTech (2010)

  76. Y.J. Sano, N. Mukai, I. Chida, T. Uehara, M. Yoda, Applications of laser peening without protective coating to enhance structural integrity of metallic components, in Proceedings of the 2nd International Laser Peening Conference. San Francisco, 19–22 April 2010

  77. A.H. Clauer, D.F. Lahrman, Laser shock peening for fatigue resistance, in Proceedings of the ASME 2000 International Mechanical Engineering Congress and Exposition . Materials: Book of Abstracts. Orlando, 5–10 November 2000. https://doi.org/10.1115/IMECE2000-2681 Orlando, Florida, USA

  78. M. Obata, Y. Sano, N. Mukai, M. Yoda, S. Shima, M. Kanno, Effect of laser peening on residual stress and stress corrosion cracking for type 304 stainless steel, in Proceedings of the 7th International Conference on Shot Peening, ed. by A. Nakonieczny. Warsaw, 28 September-1 October 1999, pp. 387–394

Download references

Acknowledgements

This work is carried out thanks to the support and funding allocated to the Unit of Mechanical and Materials Production Engineering (UGPMM/UR17ES43) by the Tunisian Ministry of Higher Education and Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manel AYEB.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Ethical Approval

No experiments involving human tissue had been carried out.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AYEB, M., FRIJA, M. & FATHALLAH, R. Laser Peening: A Review of the Factors, Effects, Applications, Comparison with Shot Peening and State-of-the-Art. Met. Mater. Int. 30, 259–283 (2024). https://doi.org/10.1007/s12540-023-01517-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-023-01517-4

Keywords

Navigation