Skip to main content
Log in

Microstructural Evolution and Mechanical Behavior of Additively Manufactured 316 L Subjected to Varied Deformation Directions

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The present work investigates the effect of deformation directions on the microstructure and mechanical properties of 316 L stainless steel processed by additive manufacturing (AM). It is found that crossly rolled AM 316 L after thickness reduction of 10% demonstrates an enhanced density of deformation twins along the different directions and a substantial hardness increment (108.6 HV, ~ 48.5%). The cross rolling process effectively raises the twinning Schmid factors, the fraction of grains in high twinning Schmid factor regions and activates the generation of multiple twinning systems. The deformation twins with multiple twinning systems have a better capacity in storing the dislocations than that with single twinning system during deformation. Thus, the large increment of hardness after small deformation using cross rolling can be ascribed to increased dislocation and twin densities while the elevated dislocation density is also assisted by the presence of multiple deformation twins. The present work suggests that the multiple deformation twinning of austenitic steel with hierarchically heterogeneous microstructure processed by AM can be effectively activated under small deformation of cross rolling, which may be also applicable for other face centered cubic metallic materials with low stacking fault energy.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The raw data required to reproduce these findings are available from the corresponding author of this paper. The processed data required to reproduce these findings are available from the corresponding author of this paper.

References

  1. S.H. Huang, P. Liu, A. Mokasdar, L. Hou, Int. J. Adv. Manuf. Technol. 67, 1191–1203 (2012)

    Article  Google Scholar 

  2. D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Acta Mater. 117, 371–392 (2016)

    Article  CAS  Google Scholar 

  3. F.K. Yan, G.Z. Liu, N.R. Tao, K. Lu, Acta Mater. 60, 1059–1071 (2012)

    Article  CAS  Google Scholar 

  4. U.I. Thomann, P.J. Uggowitzer, Wear 239, 48–58 (2000)

    Article  CAS  Google Scholar 

  5. B. AlMangour, D. Grzesiak, J.-M. Yang, J. Alloys Compd. 706, 409–418 (2017)

    Article  CAS  Google Scholar 

  6. Y. Zhong, L. Liu, S. Wikman, D. Cui, Z. Shen, J. Nucl. Mater. 470, 170–178 (2016)

    Article  CAS  Google Scholar 

  7. L.F. Liu, Q.Q. Ding, Y. Zhong, J. Zou, J. Wu, Y.L. Chiu, J.X. Li, Z. Zhang, Q. Yu, Z.J. Shen, Mater. Today 21, 354–361 (2018)

    Article  CAS  Google Scholar 

  8. A. Rohatgi, K.S. Vecchio, G.T. Gray, Metall. Mater. Trans. A 32, 135–145 (2001)

    Article  Google Scholar 

  9. A.K. Agrawal, A. Singh, A. Vivek, S. Hansen, G. Daehn, Mater. Lett. 225, 50–53 (2018)

    Article  CAS  Google Scholar 

  10. L. Lu, Y. Shen, X. Chen, L. Qian, K. Lu, Science 304, 422–426 (2004)

    Article  CAS  Google Scholar 

  11. K. Lu, L. Lu, S. Suresh, Science 324, 349–352 (2009)

    Article  CAS  Google Scholar 

  12. G.G. Yapici, I. Karaman, Z.P. Luo, H.J. Maier, Y.I. Chumlyakov, J. Mater. Res. 19, 2268–2278 (2004)

    Article  CAS  Google Scholar 

  13. J.W. Simmons, Mater. Sci. Eng. A 207, 159–169 (1996)

    Article  Google Scholar 

  14. Q. Yu, L. Qi, K. Chen, R.K. Mishra, J. Li, A.M. Minor, Nano Lett. 12, 887–892 (2012)

    Article  CAS  Google Scholar 

  15. S. Mishra, K. Narasimhan, I. Samajdar, Mater. Sci. Technol. 23, 1118–1126 (2007)

    Article  CAS  Google Scholar 

  16. Y. Jiang, X. Zhou, X.Y. Li, Mater. Sci. Eng. A 822, 141703 (2021)

    Article  CAS  Google Scholar 

  17. L. Cui, S. Jiang, J. Xu, R.L. Peng, R.T. Mousavian, J. Moverare, Mater. Des. 198, 109385 (2021)

    Article  CAS  Google Scholar 

  18. T. Voisin, J.-B. Forien, A. Perron, S. Aubry, N. Bertin, A. Samanta, A. Baker, Y.M. Wang, Acta Mater. 203, 116476 (2021)

    Article  CAS  Google Scholar 

  19. L. Liu, Q. Yu, Z. Wang, J. Ell, M.X. Huang, R.O. Ritchie, Science 368, 1347–1352 (2020)

    Article  CAS  Google Scholar 

  20. P. Mercelis, J.P. Kruth, Rapid Prototyp. J. 12, 254–265 (2006)

    Article  Google Scholar 

  21. S.I. Wright, M.M. Nowell, D.P. Field, Microsc. Microanal. 17, 316–329 (2011)

    Article  CAS  Google Scholar 

  22. A.A. Gazder, A.A. Saleh, E.V. Pereloma, Scr. Mater. 65, 560–563 (2011)

    Article  CAS  Google Scholar 

  23. K. Renard, P.J. Jacques, Mater. Sci. Eng. A 542, 8–14 (2012)

    Article  CAS  Google Scholar 

  24. M. Calcagnotto, D. Ponge, E. Demir, D. Raabe, Mater. Sci. Eng. A 527, 2738–2746 (2010)

    Article  Google Scholar 

  25. M. Wojdyr, J. Appl. Cryst. 43, 1126–1128 (2010)

    Article  CAS  Google Scholar 

  26. T. Ungar, S. Ott, P.G. Sanders, A. Borbely, J.R. Weertman, Acta Mater. 46, 3693–3699 (1998)

    Article  CAS  Google Scholar 

  27. Y.Z. Li, M.X. Huang, Acta Metall. Sin. 56, 487–493 (2020)

    CAS  Google Scholar 

  28. X. Zhang, P. Kenesei, J.-S. Park, J. Almer, M. Li, J. Nucl. Mater. 549, 152874 (2021)

    Article  CAS  Google Scholar 

  29. Y.Z. Li, S.L. Zhao, S.H. He, C.P. Huang, M.X. Huang, Int. J. Plast. 155, 103334 (2022)

    Article  CAS  Google Scholar 

  30. T. Ungár, Mater. Sci. Eng. A 309–310, 14–22 (2001)

    Article  Google Scholar 

  31. H. Wilhelm, A. Paris, E. Schafler, S. Bernstorff, J. Bonarski, T. Ungar, M.J. Zehetbauer, Mater. Sci. Eng. A 387-389, 1018–1022 (2004)

    Article  Google Scholar 

  32. B.E. Warren, Progr. Met. Phys. 8, 147–202 (1959)

    Article  CAS  Google Scholar 

  33. T. Ungar, I. Dragomir, A. Revesz, A. Borbely, J. Appl. Cryst. 32, 992–1002 (1999)

    Article  CAS  Google Scholar 

  34. M. Shamsujjoha, S.R. Agnew, J.M. Fitz-Gerald, W.R. Moore, T.A. Newman, Metall. Mater. Trans. A 49, 3011–3027 (2018)

    Article  CAS  Google Scholar 

  35. Z.Y. Liang, X. Wang, W. Huang, M.X. Huang, Acta Mater. 88, 170–179 (2015)

    Article  CAS  Google Scholar 

  36. C.S. Hong, N.R. Tao, X. Huang, K. Lu, Acta Mater. 58, 3103–3116 (2010)

    Article  CAS  Google Scholar 

  37. J.R. Luo, A. Godfrey, W. Liu, Q. Liu, Acta Mater. 60, 1986–1998 (2012)

    Article  CAS  Google Scholar 

  38. J. Jeong, Y. Lee, J.M. Park, D.J. Lee, I. Jeon, H. Sohn, H.S. Kim, T.-H. Nam, H. Sung, J.B. Seol, J.G. Kim, Additive Manuf. 47, 102363 (2021)

    Article  CAS  Google Scholar 

  39. K.M. Rahman, V.A. Vorontsov, D. Dye, Acta Mater. 89, 247–257 (2015)

    Article  CAS  Google Scholar 

  40. J. Jung, J.I. Yoon, J.G. Kim, M.I. Latypov, J.Y. Kim, H.S. Kim, Npj Comput. Mater. 3, 21 (2017)

    Article  Google Scholar 

  41. B.Q. Li, M.L. Sui, S.X. Mao, J. Mater. Sci. Technol. 27, 97–100 (2011)

    Article  Google Scholar 

  42. B.C. De Cooman, Y. Estrin, S.K. Kim, Acta Mater. 142, 283–362 (2018)

    Article  Google Scholar 

  43. X.W. Liu, L.G. Sun, L.L. Zhu, J.B. Liu, K. Lu, J. Lu, Acta Mater. 149, 397–406 (2018)

    Article  CAS  Google Scholar 

  44. L.L. Zhu, H.N. Kou, J. Lu, Appl. Phys. Lett. 101, 081906 (2012)

    Article  Google Scholar 

  45. Z.C. Luo, M.X. Huang, Scr. Mater. 142, 28–31 (2018)

    Article  CAS  Google Scholar 

  46. M. Arminjon, Texture Microstruct. 14, 1121–1128 (1991)

    Article  Google Scholar 

  47. S.-G. Hong, S.H. Park, C.S. Lee, Acta Mater. 58, 5873–5885 (2010)

    Article  CAS  Google Scholar 

  48. P. Yang, Q. Xie, L. Meng, H. Ding, Z. Tang, Scr. Mater. 55, 629–631 (2006)

    Article  CAS  Google Scholar 

  49. S.S. Cai, X.W. Li, N.R. Tao, J. Mater. Sci. Technol. 34, 1364–1370 (2018)

    Article  CAS  Google Scholar 

  50. D.H. Ahn, M. Kang, L.J. Park, S. Lee, H.S. Kim, Mater. Sci. Eng. A 684, 567–576 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

B.B. He gratefully acknowledges the financial support from the National Natural Science Foundation of China (Grant No. U52071173), Science and Technology Innovation Commission of Shenzhen (Project No. JCYJ20210324120209026; KQTD2019092917250571) and Major Talent Programs of Guangdong Province (Contract No. 2019QN01C435). The authors would like to acknowledge the technical support from SUSTech Core Research Facilities and the general-purpose powder diffractometer (GPPD) of the China Spallation Neutron Source (CSNS), Dongguan, China for the neutron diffraction experiments.

Author information

Authors and Affiliations

Authors

Contributions

XH: Methodology, Investigation, Data curation, Formal analysis, Writing. BBH: Supervision, Review & editing, Funding acquisition.

Corresponding authors

Correspondence to X. He or B. B. He.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding authors state that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., He, B.B. Microstructural Evolution and Mechanical Behavior of Additively Manufactured 316 L Subjected to Varied Deformation Directions. Met. Mater. Int. 30, 25–38 (2024). https://doi.org/10.1007/s12540-023-01478-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-023-01478-8

Keywords

Navigation