Skip to main content
Log in

Effects of Extrusion Temperature on the Properties of a 0.5 wt% GNP/Al Composite in Porthole Die Extrusion

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

A 0.5 wt% GNP/Al composite was prepared by powder metallurgy and hot pressing. The numerical simulations and experiments of porthole die extrusion were performed at 440 °C, 460 °C, 480 °C and 500 °C. The effect of extrusion temperature on the microstructure and mechanical properties of the composites was studied. The results showed that the composite near the welding zone underwent dynamic recrystallization due to the large strain to form fine grains, some of which grew to coarse grains because of the local high temperature. The extrusion temperature influenced the properties of the 0.5 wt% GNP/Al composite along both the extrusion and transverse directions. This influence is combined with synergistic effects on the recrystallization of the grain, fluidity and plasticity of the matrix, determined by the delamination, distribution and structure of graphene and welding behavior in the welding zone. Therefore, the comprehensive mechanical properties of the composite reached the highest values in the extrusion direction and the transverse direction at 460 °C; the TEM images showed that the graphene and aluminum matrix were in contact with each other via a small wavy transition overlapping zone or that interaction forces caused by welding and shearing allowed the formation of a direct interface with the Al matrix. The deformed graphene formed a good interface with the matrix, ensuring outstanding mechanical properties in the welding zone.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Awad, N.M. Hassan, S. Kannan, Proc. Inst. Mech. Eng. Part B 235, 2093–2107 (2021). https://doi.org/10.1177/09544054211015956

    Article  CAS  Google Scholar 

  2. A. Rashid, A. Fahad, Z. Aqib, N.S. Rub, H.T. Naeem, H. Tianbing, S. Muhammad, A. Zahid, S. Attaullah, M. Arshad, B.A. Hasan, J. Alloys Compd. 889, 161531 (2021). https://doi.org/10.1016/j.jallcom.2021.161531

    Article  CAS  Google Scholar 

  3. R. Sachin, K. Ratnesh, L. Kunwar, Proc. Inst. Mech. Eng., Part B 235, 1892–1903 (2021). https://doi.org/10.1177/09544054211021341

    Article  CAS  Google Scholar 

  4. Y. Mao, J.X. Li, V. Anupam, S.D. Glenn, Mater. Lett. 303, 103549 (2021). https://doi.org/10.1016/j.matlet.2021.130549

    Article  CAS  Google Scholar 

  5. W.S. Yang, Q.Q. Zhao, L. Xin, J. Qiao, J.Y. Zou, P.Z. Shao, Z.H. Yu, Q. Zhang, G.H. Wu, J. Alloys Compd. 732, 748–758 (2018). https://doi.org/10.1016/j.jallcom.2017.10.283

    Article  CAS  Google Scholar 

  6. X.R. Chen, D.F. Fu, J. Teng, H. Zhang, J. Alloys Compd. 753, 566–575 (2018). https://doi.org/10.1016/j.jallcom.2018.04.223

    Article  CAS  Google Scholar 

  7. J.C. Li, X.X. Zhang, L. Geng, Compos. Part A Appl. Sci. Manuf. 121, 487–498 (2019). https://doi.org/10.1016/j.compositesa.2019.04.010

    Article  CAS  Google Scholar 

  8. R.V. Kumar, R. Harichandran, U. Vignesh, M. Thangavel, S.B. Chandrasekhar, J. Alloys Compd. 855, 157448 (2021). https://doi.org/10.1016/j.jallcom.2020.157448

    Article  CAS  Google Scholar 

  9. M.E. Turan, M. Rashad, H. Zengin, I. Topcu, Y. Sun, M. Asif, J. Mater. Eng. Perform. 29, 5227–5237 (2020). https://doi.org/10.1007/s11665-020-05032-0

    Article  CAS  Google Scholar 

  10. Z.H. Yu, W.S. Yang, C. Zhou, N.B. Zhang, Z.L. Chao, H. Liu, Y.F. Cao, Y. Sun, P.Z. Shao, G.H. Wu, Carbon 141, 25–39 (2019). https://doi.org/10.1016/j.carbon.2018.09.041

    Article  CAS  Google Scholar 

  11. P.Z. Shao, W.S. Yang, Q. Zhang, Q.Y. Meng, X. Tan, Z.Y. Xiu, J. Qiao, Z.H. Yu, G.H. Wu, Compos. Part A Appl. Sci. Manuf. 109, 151–162 (2018). https://doi.org/10.1016/j.compositesa.2018.03.009

    Article  CAS  Google Scholar 

  12. S.M. Lou, A.N. Wang, S. Lu, G.X. Guo, C.D. Qu, C.J. Su, Int. J. Adv. Manuf. Technol. 103, 1309–1323 (2019). https://doi.org/10.1007/s00170-019-03573-w

    Article  Google Scholar 

  13. X. Xu, G.Q. Zhao, Y.X. Wang, X.X. Chen, C.S. Zhang, Vacuum 167, 28–39 (2019). https://doi.org/10.1016/j.vacuum.2019.05.032

    Article  CAS  Google Scholar 

  14. W.M. Jiang, J.W. Zhu, G.Y. Li, F. Guan, Y. Yu, Z.T. Fan, J. Mater. Sci. Technol. 88, 119–131 (2021). https://doi.org/10.1016/j.jmst.2021.01.077

    Article  CAS  Google Scholar 

  15. J.W. Zhu, W.M. Jiang, G.Y. Li, F. Guan, Z.T. Fan, J. Mater. Process. Technol. 283, 116699 (2020). https://doi.org/10.1016/j.jmatprotec.2020.116699

    Article  CAS  Google Scholar 

  16. W.M. Jiang, Z.T. Fan, D.J. Liu, Trans. Nonferr. Met. Soc. China 22, s7–s13 (2012). https://doi.org/10.1016/s1003-6326(12)61676-8

    Article  Google Scholar 

  17. A.J. den Bakker, R.J. Werkhoven, W.H. Sillekens, L. Katgerman, J. Mater. Process. Technol. 214, 2349–2358 (2014). https://doi.org/10.1016/j.jmatprotec.2014.05.001

    Article  CAS  Google Scholar 

  18. S.W. Bai, G. Fang, J. Zhou, J. Mater. Process. Technol. 250, 109–120 (2017). https://doi.org/10.1016/j.jmatprotec.2017.07.012

    Article  CAS  Google Scholar 

  19. X.H. Fan, D. Tang, W.L. Fang, D.Y. Li, Y.H. Peng, Mater. Charact. 118, 468–480 (2016). https://doi.org/10.1016/j.matchar.2016.06.025

    Article  CAS  Google Scholar 

  20. Y. Zhao, B.Y. Song, Z.Y. Yan, X. Zhang, J.Y. Pei, J. Mater. Process. Technol. 235, 149–157 (2016). https://doi.org/10.1016/j.jmatprotec.2016.04.021

    Article  CAS  Google Scholar 

  21. J.Q. Yu, G.Q. Zhao, L. Chen, J. Mater. Process. Technol. 230, 153–166 (2016). https://doi.org/10.1016/j.jmatprotec.2015.11.020

    Article  CAS  Google Scholar 

  22. J.Q. Yu, G.Q. Zhao, X.T. Zhao, L. Chen, M.M. Chen, J. Mater. Process. Technol. 267, 1–16 (2019). https://doi.org/10.1016/j.jmatprotec.2018.12.006

    Article  CAS  Google Scholar 

  23. J.W. Tang, L. Chen, G.Q. Zhao, C.S. Zhang, X.R. Chu, Mater. Sci. Eng. A 773, 138718 (2020). https://doi.org/10.1016/j.msea.2019.138718

    Article  CAS  Google Scholar 

  24. S.J. Yan, S.L. Dai, X.Y. Zhang, C. Yang, Q.H. Hong, J.Z. Chen, Z.M. Lin, Mater. Sci. Eng. A 612, 440–444 (2014). https://doi.org/10.1016/j.msea.2014.06.077

    Article  CAS  Google Scholar 

  25. P.Z. Shao, G.Q. Chen, B.Y. Ju, W.S. Yang, Q. Zhang, Z.J. Wang, X. Tan, Y.Y. Pei, S.J. Zhong, M. Hussain, G.H. Wu, Carbon 162, 455–464 (2020). https://doi.org/10.1016/j.carbon.2020.02.080

    Article  CAS  Google Scholar 

  26. G.H. Wu, Z.H. Yu, L.T. Jiang, C. Zhou, G. Deng, X.B. Deng, Y.Z. Xiao, Carbon 152, 932–945 (2019). https://doi.org/10.1016/j.carbon.2019.06.077

    Article  CAS  Google Scholar 

  27. S.M. Lou, B.J. Cheng, Y.Q. Liu, X. Li, X.F. Bai, P. Chen, Y.M. Li, L. Li, J. Mater. Eng. Perform. (2022). https://doi.org/10.1007/s11665-022-07775-4

  28. S.M. Lou, L.W. Ran, Y.Q. Liu, P. Chen, C.J. Su, Q.B. Wang, J. Mater. Eng. Perform. 31, 6533–6544 (2022). https://doi.org/10.1007/s11665-022-06723-6

    Article  CAS  Google Scholar 

  29. C.S. Zhang, G.Q. Zhao, Z. Chen, H. Chen, F.J. Kou, Mater. Sci. Eng. B 177, 1691–1697 (2012). https://doi.org/10.1016/j.mseb.2011.09.041

    Article  CAS  Google Scholar 

  30. J. Zeng, F.H. Wang, S. Dong, X. Nie, Y. Fan, J. Dong, Metall. Mater. Trans. A 52, 316–331 (2021). https://doi.org/10.1007/s11661-020-06064-w

    Article  CAS  Google Scholar 

  31. A.C. Ferrari, D.M. Basko, Nat. Nanotechnol. 8, 235–246 (2013). https://doi.org/10.1038/nnano.2013.46

    Article  CAS  Google Scholar 

  32. A.C. Ferrari, Solid State Commun. 143, 47–57 (2007). https://doi.org/10.1016/j.ssc.2007.03.052

    Article  CAS  Google Scholar 

  33. A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, P. Eklund, Nano Lett. 6, 2667–2673 (2006). https://doi.org/10.1021/nl061420a

    Article  CAS  Google Scholar 

  34. S.E. Shin, Y.J. Ko, D.H. Bae, Compos. Part B Eng. 106, 66–73 (2016). https://doi.org/10.1016/j.compositesb.2016.09.017

    Article  CAS  Google Scholar 

  35. T.M.G. Mohiuddin, A. Lombardo, R.R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D.M. Basko, C. Galiotis, N. Marzari, K.S. Novoselov, A.K. Geim, A.C. Ferrari, Phys. Rev. B 79(20), 205433 (2009). https://doi.org/10.1103/PhysRevB.79.205433

    Article  Google Scholar 

  36. J. Xu, T. Sun, Y.T. Xu, Q.H. Han, Constr. Build. Mater. 230, 116904 (2020). https://doi.org/10.1016/j.conbuildmat.2019.116904

    Article  Google Scholar 

  37. B.W. Pu, X. Zhang, D.D. Zhao, C.N. He, C.S. Shi, E.Z. Liu, J.W. Sha, N.Q. Zhao, Carbon 183, 530–545 (2021). https://doi.org/10.1016/j.carbon.2021.07.042

    Article  CAS  Google Scholar 

  38. R.Q. Han, H.Y. Song, M.R. An, Comput. Mater. Sci. 197, 110604 (2021). https://doi.org/10.1016/j.commatsci.2021.110604

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Key project of the Shandong Provincial Natural Science Foundation, China (ZR2020KE013), National Natural Science Foundation of China (No. 51705295), Shandong Provincial Natural Science Foundation (No. ZR2022ME032), and SDUST Research Fund (No. 2018TDJH101).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shumei Lou or Qingbiao Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lou, S., Li, Y., Cheng, B. et al. Effects of Extrusion Temperature on the Properties of a 0.5 wt% GNP/Al Composite in Porthole Die Extrusion. Met. Mater. Int. 29, 3607–3617 (2023). https://doi.org/10.1007/s12540-023-01471-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-023-01471-1

Keywords

Navigation