Skip to main content
Log in

A New Dynamic Recrystallization Kinetics Model of Cast-Homogenized Magnesium Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Dynamic recrystallization always occurs during hot forming of magnesium alloys and largely controls their microstructure evolution. In this study, we developed a new dynamic recrystallization kinetics model with one undetermined parameter based on isothermal compression tests of a cast-homogenized Mg-8Gd-3Y alloy (GW83) at temperatures ranging from 300 °C to 450 °C and strain rates from 0.001 to 0.1 s−1, and measured its dynamic recrystallization volume fractions. The undetermined parameter could be determined by parameter regression. The adaptability of the new model was further examined by comparison with the published data of isothermal compression experiments of AZ31B and ZK60 alloys. The predicted results were well consistent with the experimental results. By integrating the new model with finite element software, we investigated the dynamic recrystallization kinetics of upsetting and plane strain forging of GW83 alloy. The predicted distributions of the dynamic recrystallization volume fraction agreed very well with the experimental values under four different sets of isothermal deformation conditions. These results indicated that the new dynamic recrystallization kinetics model affords highly accurate predictions of the kinetics of cast-homogenized magnesium alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. C. Meng, Z.K. Chen, H.N. Yang, G. Li, X.L. Wang, and H. Bao: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 5192–5204.

    Google Scholar 

  2. A. Hadadzadeh, F. Mokdad, M.A. Wells, and D.L. Chen: Mater. Sci. Eng. A, 2018, vol. 720, pp. 180–88.

    CAS  Google Scholar 

  3. H.L. Chen, J. Yang, H. Zhou, J. Moering, Z. Yin, Y.L. Gong, and K.Y. Zhao: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 3961–70.

    Google Scholar 

  4. A. Khosravani, D.T. Fullwood, B.L. Adams, T.M. Rampton, M.P. Miles, and R.K. Mishra: Acta Mater., 2015, vol. 100, pp. 202–14.

    CAS  Google Scholar 

  5. M.Z. Bian, Z.R. Zeng, S.W. Xu, W.N. Tang, C.H.J. Davies, N. Birbilis, and J.F. Nie: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 5709–13.

    Google Scholar 

  6. Z.W. Cai, F.X. Chen, F.J. Ma, and J.Q Guo: J. Alloys Compd., 2016, vol. 670, pp. 55–63.

    CAS  Google Scholar 

  7. Y. Xu, L.X. Hu, and Y. Sun: J. Alloys Compd., 2013, vol. 580, pp. 262–69.

    CAS  Google Scholar 

  8. H.T Zhou, Q.B. Li, Z.K. Zhao, Z.C. Liu, S.F. Wen, and Q.D. Wang: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2022–26.

    Google Scholar 

  9. M.S. Chen, W.Q. Yuan, H.B. Li, and Z.H. Zou: Mater. Charact., 2019, vol. 147, pp. 173–83.

    CAS  Google Scholar 

  10. G.Z. Quan, Y.L. Li, L. Zhang, and X. Wang: Vacuum, 2017, vol. 139, pp. 51–63.

    CAS  Google Scholar 

  11. A.K. Miller: J. Eng. Mater. Technol., 1976, vol. 98(2), pp. 97-105.

    CAS  Google Scholar 

  12. R.O. Adebanjo and A.K. Miller: Mater. Sci. Eng. A, 1989, vol. 119, pp. 87–94.

    Google Scholar 

  13. A.K. Miller and O.D. Sherby: Acta Metall., 1978, vol. 26, pp. 289–304.

    CAS  Google Scholar 

  14. A.K. Miller: J. Eng. Mater. Technol., 1980, vol. 102, pp. 215.

    Google Scholar 

  15. H. Jiang, J.X. Dong, M.C. Zhang, and Z.H. Yao: J. Alloys Compd., 2018, vol. 735, pp. 1520–35.

    CAS  Google Scholar 

  16. J. Li, H. Xu, T.T. Mattila, J.K. Kivilahti, T. Laurila, and M. Paulasto-Kröckel: Comput. Mater. Sci., 2010, vol. 50, pp. 690–97.

    CAS  Google Scholar 

  17. R. McLaughlin and R. Srinivasan: Mater. Manuf. Process., 2001, vol. 16(6), pp. 763–77.

    CAS  Google Scholar 

  18. P. Peczak: Acta Metall. Mater., 1995, vol. 43, pp. 1279–91.

    CAS  Google Scholar 

  19. M. Grujicic, S. Ramaswami, J.S. Snipes, V. Avuthu, R. Galgalikar, and Z. Zhang: J. Mater. Eng. Perform., 2015, vol. 24, pp. 3471–86.

    CAS  Google Scholar 

  20. M. Beck, M. Morse, C. Corolewski, K. Fritchman, C. Stifter, C. Poole, M. Hurley, and M. Frary: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 3831–42.

    Google Scholar 

  21. A. Williamson and J.-P. Delplanque: Conput, Mater. Sci., 2016, vol. 124, pp. 114–129.

    Google Scholar 

  22. Y.H. Sun, R.C. Wang, J. Ren, C.Q. Peng, and Y. Feng: Mater. Charact., 2019, vol. 131, pp. 158–68.

    Google Scholar 

  23. Y. Xu, C. Chen, X.X. Zhang, H.H. Dai, J.B. Jia, and Z.H. Bai: Mater. Charact., 2018, vol. 145, pp. 39–52.

    CAS  Google Scholar 

  24. J. Liu, Z.S. Cui, and L. Ruan: Mater. Sci. Eng. A, 2011, vol. 529, pp. 300–10.

    CAS  Google Scholar 

  25. Y.J. Qin, Q.L. Pan, Y.B. He, W.B. Li, X.Y. Liu, and X. Fan: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2790–97.

    Google Scholar 

  26. A. Yanagida and J. Yanagimto: J. Mater. Process. Tech., 2004, vol. 151, pp. 33–38.

    CAS  Google Scholar 

  27. H. Mirzadeh, M. Roostaei, M.H. Parsa and R. Mahmudi: Int. J. Mater. Res., 2016, vol. 107, pp. 277–79.

    CAS  Google Scholar 

  28. H. Mirzadeh, J.M. Cabrera, A. Najafizadeh and P.R. Calvillo: Mater. Sci. Eng. A, 2012, vol. 538, pp. 236–245.

    CAS  Google Scholar 

  29. X. Nie, S. Dong, F.H. Wang, L. Jin, Z.Y Zhang, J. Dong, and Y.Z. Wang: J. Mater. Process. Tech., 2020, vol. 275, pp. 637–44.

    Google Scholar 

  30. I. Basu and T. Al-Samman: Acta Mater., 2015, vol. 96, pp.111–32.

    CAS  Google Scholar 

  31. Q. Yang, C. Ji, and M.Y. Zhu: Metall. Mater. Trans. A, 2019, vol. 50A, pp. 357–76.

    Google Scholar 

  32. J.Q. Hao, J.S. Zhang, C.X. Xu, and K.B Nie: J. Alloys Compd., 2018, vol. 754, pp. 283–96.

    CAS  Google Scholar 

  33. M.S. Chen, Y.C. Lin, K.K. Li, and Y. Zou: Comput, Mater. Sci., 2016, vol. 122, pp. 150–58.

    CAS  Google Scholar 

  34. C.M. Sellars: Mater. Sci. Technol., 1990, vol. 6, pp. 1072–81.

    CAS  Google Scholar 

  35. C.M. Sellars and J.A. Whiteman: Met. Sci., 1979, vol. 13, pp. 187–94.

    CAS  Google Scholar 

  36. T. Senuma, M. Suehiro, and H. Yada: ISIJ Int., 1992, vol. 32(3), pp. 423-32.

    CAS  Google Scholar 

  37. S.-I. Kim and Y.-C. Yoo: Mater. Sci. Eng. A, 2001, vol. 311, pp. 108–13.

    Google Scholar 

  38. R. Kopp, K. Karnhausen, and M.M. Souza: Scand. J. Metall., 1911, vol. 20, pp. 351–63.

    Google Scholar 

  39. A. Laasraoui and J.J. Jonas: Metall. Trans. A, 1991, vol. 22, pp. 151–60.

    Google Scholar 

  40. M. El Wahabi, L. Gavard, F. Montheillet, J.M. Cabrera, and J.M. Prado: Acta Mater., 2005, vol. 53, pp. 4605–12.

    Google Scholar 

  41. H. Mirzadeh and A. Najafizadeh: Mater. Sci. Eng. A, 2010, vol. 527, pp. 1856–1860.

    Google Scholar 

  42. L.X. Kong, P.D. Hodgson and D.C. Collinson: J. Mater. Process. Tech., 2000, vol. 102, pp. 84–89.

    Google Scholar 

  43. J. Zeng, F.H. Wang, X.X. Wei, S. Dong, Z.Y. Zhang, and J. Dong: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 497–512.

    Google Scholar 

  44. S.S. Zhou, K.K. Deng, J.C. Li, K.B. Nie, F.J. Xu, H.F. Zhou, and J.F. Fan: Mater. Des., 2014, vol. 64, pp. 177–84.

    CAS  Google Scholar 

  45. Y.C. Lin, F. Wu, Q.W. Wang, D.D. Chen, and S.K. Singh: Vacuum, 2018, vol. 151, pp. 283–93.

    CAS  Google Scholar 

  46. X.G. Fan, H. Yang, P.F. Gao, R. Zuo, and P.H. Lei: J. Mater. Process. Tech., 2016, vol. 234, pp. 290–99.

    CAS  Google Scholar 

  47. E.I. Poliak and J.J. Jonas: Acta Mater., 1996, vol. 44, pp.127–36.

    CAS  Google Scholar 

  48. H. Mirzadeh and A. Najafizadeh: Mater. Des., 2010, vol. 31, pp. 4577–4583.

    CAS  Google Scholar 

  49. X.C. Li, L.L. Duan, J.W. Li, and X.C. Wu: Mater. Des., 2015, vol. 66, pp. 309–20.

    CAS  Google Scholar 

  50. Y.C. Lin and M.S. Chen: J. Mater. Process. Tech., 2009, vol. 209, pp. 4578–83.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Research and Development Program of China (Grant No. 2016YFB0301103), the National Natural Science Foundation of China (Grant No. 51701117 and Grant No. 51601112) and the Fundamental Research Funds for the Central Universities of China (Grant No. PA2019GDPK0048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Dong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 11, 2020; accepted October 12, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, J., Wang, F., Dong, S. et al. A New Dynamic Recrystallization Kinetics Model of Cast-Homogenized Magnesium Alloys. Metall Mater Trans A 52, 316–331 (2021). https://doi.org/10.1007/s11661-020-06064-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-06064-w

Navigation