Skip to main content
Log in

Microstructure Evolution and Dynamic Recrystallization Behavior of SLM GH3536 Superalloy During hot Deformation

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

GH3536 nickel-based superalloy was prepared using selective laser melting (SLM) to study its hot deformation behavior, microstructure evolution, and recrystallization mechanism during hot compression. GH3536 superalloy was hot compressed by a Gleeble-3800 hot simulation testing machine. The compression temperature was 900℃~1050℃, and the strain rate was 0.01s− 1~10s− 1. The results show that the deformation conditions will significantly affect the flow stress, dislocation density, and the development of grain boundary and subgrains boundary. The dynamic recrystallization (DRX) mechanism is also easily affected by the deformation conditions and different deformation regions. The alloy has experienced work hardening (WH), dynamic recovery (DRV), and DRX in hot deformation and finally entered the steady-state rheological stage. The dynamic softening effect is more evident at a low strain rate. The temperature will strongly affect the migration of dislocations and limit the transformation from LAGB to HAGB, thus affecting the formation of grain boundaries and finally affecting the DRX mechanism. It is found that DRX is not a single process, and discontinuous dynamic recrystallization (DDRX) and continuous dynamic recrystallization (CDRX) exist at the same time. DDRX is the primary nucleation mechanism characterized by grain boundary expansion. CDRX is an auxiliary nucleation mechanism characterized by gradual rotation of subgrains, and CDRX is easier to activate at low temperatures.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. D. Tomus, P.A. Rometsch, M. Heilmaier, X. Wu, Addit. Manuf. 16, 65–72 (2017)

    Google Scholar 

  2. D. Tomus, T. Jarvis, X. Wu, J. Mei, P. Rometsch, E. Herny, J.F. Rideau, S. Vaillant, Phys. Procedia 41, 823–827 (2013)

    Article  CAS  Google Scholar 

  3. E.J. Pickering, H. Mathur, A. Bhowmik, O.M.D.M. Messe, J.S. Barnard, M.C. Hardy, R. Krakow, K. Loehnert, H.J. Stone, C.M.F. Rae, Acta Mater. 60, 2757–2769 (2012)

    Article  CAS  Google Scholar 

  4. D. Tomus, Y. Tian, P.A. Rometsch, M. Heilmaier, X. Wu, Mater. Sci. Eng. A 667, 42–53 (2016)

    Article  Google Scholar 

  5. S.V.S. Murty, S. Torizuka, K. Nagai, T. Kitai, Y. Kogo, Scripta Mater. 53, 763–768 (2005)

    Article  CAS  Google Scholar 

  6. H.U. Hong, I.S. Kim, B.G. Choi, H.W. Jeong, C.Y. Jo, Mater. Lett. 62, 4351–4353 (2008)

    Article  CAS  Google Scholar 

  7. J. Kundin, L. Mushongera, H. Emmerich, Acta Mater. 95, 343–356 (2015)

    Article  CAS  Google Scholar 

  8. J. He, J. Dong, M. Zhang, Z. Yao, Mater. Sci. Eng. A 649, 369–381 (2016)

    Article  Google Scholar 

  9. H. Zhang, K. Zhang, H. Zhou, Z. Lu, C. Zhou, X. Yang, Mater. Des. 80, 51–62 (2015)

    Article  CAS  Google Scholar 

  10. C.Y. Lin, X.Y. Wu, X.M. Chen, J. Chen, D.X. Wen, Alloys Compd. 640, 101–113 (2015)

    Article  CAS  Google Scholar 

  11. S.C. Medeiros, Y.V.R.K. Prasad, W.G. Frazier, R. Srinivasan, Mater. Sci. Eng. A 293, 198–207 (2000)

    Article  Google Scholar 

  12. T. Etter, K. Kunze, F. Geiger, H. Meidani, IOP Conf. Ser. Mater. Sci. Eng. 82, 012097 (2015)

    Google Scholar 

  13. T. Yang, D. Tomus, P. Rometsch, X. Wu, Addit. Manuf. 13, 103–112 (2017)

    Google Scholar 

  14. F. Wang, Int. J. Adv. Manuf. Technol. 58, 545–551 (2012)

    Article  Google Scholar 

  15. B.C. Xie, B.Y. Zhang, H. Yu, H. Yang, Q. Liu, Y.Q. Ning, Mater. Sci. Eng. A 784, 139334 (2020)

    Article  CAS  Google Scholar 

  16. P.J. Hurley, F.J. Humphreys, Acta Mater. 51, 1087–1102 (2003)

    Article  CAS  Google Scholar 

  17. A.M. Wusatowska-Sarnek, H. Miura, T. Sakai, Mater. Sci. Eng. A 323, 177–186 (2002)

    Article  Google Scholar 

  18. D. Li, Q. Guo, S. Guo, H. Peng, Z. Wu, Mater. Des. 32, 696–705 (2011)

    Article  CAS  Google Scholar 

  19. X.M. Chen, Y.C. Lin, D.X. Wen, J.L. Zhang, M. He, Mater. Des. 57, 568–577 (2014)

    Article  CAS  Google Scholar 

  20. B.C. Xie, H. Yu, T. Sheng, Y. Xiong, Y.Q. Ning, M.W. Fu, J. Alloys Compd. 803, 16–29 (2019)

    Article  CAS  Google Scholar 

  21. M. Haël, Acta Mater. 81, 21–29 (2014)

    Article  Google Scholar 

  22. Y. Wang, W.Z. Shao, L. Zhen, L. Yang, X.M. Zhang, Mater. Sci. Eng. A 497, 479–486 (2008)

    Article  Google Scholar 

  23. O. Sanchez-Mata, J.A. Muiz-Lerma, X. Wang, S.E. Atabay, M. Attarian Shandiz, M. Brochu, Mater. Sci. Eng. A 780, 139177 (2020)

    Article  CAS  Google Scholar 

  24. A. Momeni, K. Dehghani, H. Keshmiri, G.R. Ebrahimi, Mater. Sci. Eng. A 527, 1605–1611 (2010)

    Article  Google Scholar 

  25. D. Zhang, N. Wen, X. Cao, Z. Liu, Mater. Sci. Eng. A 644, 32–40 (2015)

    Article  CAS  Google Scholar 

  26. D. Jia, W. Sun, D. Xu, F. Liu, J. Mater. Sci. Technol. 35, 1851–1859 (2019)

    Article  CAS  Google Scholar 

  27. J.-C. Zhao, M. Larsen, V. Ravikumar, Mater. Sci. Eng. A 293, 112–119 (2000)

    Article  Google Scholar 

  28. C. Zhang, L. Zhang, W. Shen, Q. Xu, Y. Cui, J. Alloys Compd. 728, 1269–1278 (2017)

    Google Scholar 

  29. K. Chen, J. Wu, H. Shi, X. Chen, Z. Shen, M. Zhang, L. Zhang, A. Shan, Mater. Charact. 106, 175–184 (2015)

    Article  CAS  Google Scholar 

  30. M.R. Ghandehari Ferdowsi, M. Mazinani, G.R. Ebrahimi, Mater. Sci. Eng. A 606, 214–227 (2014)

    Article  Google Scholar 

  31. N.N. Guo, L. Wang, L.S. Luo, X.Z. Li, R.R. Chen, Y.Q. Su, J.J. Guo, H.Z. Fu, Mater. Sci. Eng. A 651, 698–707 (2016)

    Article  CAS  Google Scholar 

  32. Z. Wan, Y. Sun, L. Hu, H. Yu, Mater. Des. 122, 11–20 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are very grateful for the support received from the Nature Science Foundation of Shaanxi (NO. 2021JQ-286), Key Research and Development Plan in Shaanxi Province of China (NO. 2021GY-211) and Fundamental Research Funds for the Central Universities, CHD (No. 300102311403).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanwei Yuan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Z., Wang, S., Zhang, H. et al. Microstructure Evolution and Dynamic Recrystallization Behavior of SLM GH3536 Superalloy During hot Deformation. Met. Mater. Int. 29, 3356–3370 (2023). https://doi.org/10.1007/s12540-023-01446-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-023-01446-2

Keywords

Navigation