Skip to main content
Log in

Dissimilar Joining of Low-Carbon Steel to 6061-T6 Aluminum Alloy by Novel Method of Pinless Friction Stir Spot Welding-Brazing

  • Published:
Metals and Materials International Aims and scope Submit manuscript

A Correction to this article was published on 29 August 2022

This article has been updated

Abstract

In this research, AA6061-T6 aluminum alloy sheets were successfully lap-joined to St14 low-carbon steel sheets through the friction stir spot welding-brazing method with a pinless tool in the presence of a zinc interlayer. The effects of rotating speed and dwell time on the metallurgical structure and mechanical properties were investigated. It was observed that placing the pinless tool on the steel side melts the zinc interlayer and aluminum base metal and leads to forming different microstructures on both sides of the joint. The achievements demonstrated that the joints had a sound shape, and the maximum tensile-shear failure load (TSFL) obtained for all the joints was more than 4.2 kN. The specimen produced at the rotating speed of 1200 rpm and dwell time of 15 s represented a maximum TSFL and fracture energy of 7.4 kN and 35 J, respectively. Moreover, increasing the intermetallic layer thickness to almost 25 μm improved the TSFL. However, any further thickness growth caused an intense drop in the TSFL. The intermetallic layer, composed of brittle FeAl3 and Fe2Al5 phases, was formed near the Al-Zn alloy interface with a great amount of Al, and this culminated in an expansion of the joint surface. Furthermore, fracture surface analysis indicated the occurrence of a fracture at the interface. Some porosities with an average diameter of 50 to 255 μm were observed for the sample having the maximum heat input at the fracture surface of the aluminum side, which was probably due to the zinc volatilization causing a decrease in the mechanical properties.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The raw data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

Change history

References

  1. P. Li, S. Chen, H. Dong, H. Ji, Y. Li, X. Guo, G. Yang, X. Zhang, X. Han, J. Manuf. Process. 49, 385 (2020). https://doi.org/10.1016/j.jmapro.2019.09.047

    Article  CAS  Google Scholar 

  2. G. Filliard, M. Elmansori, L. Tirado, S. Mezghani, C. Bremont, M. de Metz-Noblat, J. Manuf. Process. 25, 104 (2017). https://doi.org/10.1016/j.jmapro.2016.12.002

    Book  Google Scholar 

  3. R.P. Mahto, S. Anishetty, A. Sarkar, O. Mypati, S.K. Pal, J.D. Majumdar, Met. Mater. Int. 25, 752 (2019). https://doi.org/10.1007/s12540-018-00222-x

    Article  Google Scholar 

  4. N. Kumar, W. Yuan, R.S. Mishra, Friction Stir Welding of Dissimilar Alloys and Materials: A volume in Friction Stir Welding and Processing (Butterworth-Heinemann, Oxford, 2015)

  5. A. Heidarzadeh, S. Mironov, R. Kaibyshev, G. Çam, A. Simar, A. Gerlich, F. Khodabakhshi, A. Mostafaei, D.P. Field, J.D. Robson, A. Deschamps, P.J. Withers, Prog. Mater. Sci. 117, 100752 (2021). https://doi.org/10.1016/j.pmatsci.2020.100752

    Article  CAS  Google Scholar 

  6. K.P. Mehta, J. Mater. Res. 34, 78 (2019). https://doi.org/10.1557/jmr.2018.332

    Article  Google Scholar 

  7. R.P. Mahto, R. Kumar, S.K. Pal, Mater. Charact. 160, 110115 (2020). https://doi.org/10.1016/j.matchar.2019.110115

    Article  CAS  Google Scholar 

  8. G. Çam, M. Koçak, J. Mater. Sci. 42, 7154 (2007). https://doi.org/10.1007/s10853-007-1604-z

    Article  Google Scholar 

  9. G. Çam, V. Ventzke, J.F. Dos Santos, M. Koçak, G. Jennequin, P. Gonthier-Maurin, Sci. Technol. Weld. Join. 4, 317 (1999). https://doi.org/10.1179/136217199101537941

    Article  Google Scholar 

  10. M.R. Arghavani, M. Movahedi, A.H. Kokabi, Mater. Design 102, 106 (2016). https://doi.org/10.1016/j.matdes.2016.04.033

    Article  CAS  Google Scholar 

  11. S. Alaeibehmand, S.E. Mirsalehi, E. Ranjbarnodeh, J. Mater. Res. Technol. 15, 996 (2021). https://doi.org/10.1016/j.jmrt.2021.08.071

    Article  CAS  Google Scholar 

  12. B. Rahmatian, K. Dehghani, S.E. Mirsalehi, J. Manuf. Process. 52, 152 (2020). https://doi.org/10.1016/j.jmapro.2020.01.046

    Article  Google Scholar 

  13. G. İpekoğlu, G. Çam, Metall. Mater. Trans. A 45, 3074 (2014). https://doi.org/10.1007/s11661-014-2248-7

    Article  Google Scholar 

  14. G. Çam, G. İpekoğlu, H. Tarık Serindağ, Sci. Technol. Weld. Join. 19, 715 (2014).‏ https://doi.org/10.1179/1362171814Y.0000000247

  15. Y. Bozkurt, S Salman, G. Çam, Sci. Technol. Weld. Join. 18, 337 (2013).‏ https://doi.org/10.1179/1362171813Y.0000000111

  16. N. Kashaev, V. Ventzke, G. Çam, J. Manuf. Process. 36, 571 (2018). https://doi.org/10.1016/j.jmapro.2018.10.005

    Article  Google Scholar 

  17. G. İpekoğlu, S. Erim, B.G. Kıral, G. Çam, Kovove Mater. 51, 155 (2013).‏ https://doi.org/10.4149/km_2013_3_155

  18. B. Bagheri, M. Abbasi, A. Abdollahzadeh, H. Omidvar, Met. Mater. Int. 26, 1562 (2020). https://doi.org/10.1007/s12540-019-00416-x

    Article  Google Scholar 

  19. G. Zhang, L. Zhang, C. Kang, J. Zhang, Mater. Design 94, 502 (2016). https://doi.org/10.1016/j.matdes.2016.01.057

    Article  CAS  Google Scholar 

  20. P. Chai, Y. Wang, Met. Mater. Int. 25, 1574 (2019). https://doi.org/10.1007/s12540-019-00291-6

    Article  CAS  Google Scholar 

  21. M.R. Akbarpour, A. Mashhuriazar, M. Daryani, Met. Mater. Int. 27, 4074 (2021). https://doi.org/10.1007/s12540-020-00840-4

    Article  Google Scholar 

  22. A.N. Ashong, M. Lee, S.-T. Hong, Y.S. Lee, J.H. Kim, Met. Mater. Int. 27, 639 (2021). https://doi.org/10.1007/s12540-020-00788-5

    Article  Google Scholar 

  23. J.Y. Cao, M. Wang, L. Kong, H.X. Zhao, P. Chai, Mater. Charact. 128, 54 (2017). https://doi.org/10.1016/j.matchar.2017.03.023

    Article  CAS  Google Scholar 

  24. H. Moghanni, K. Dehghani, A. Shafiei, J. Mater. Res. Technol. 16, 1069 (2022). https://doi.org/10.1016/j.jmrt.2021.12.050

    Article  CAS  Google Scholar 

  25. R.Z. Xu, D.R. Ni, Q. Yang, B.L. Xiao, C.Z. Liu, Z.Y. Ma, Mater. Charact. 140, 197 (2018). https://doi.org/10.1016/j.matchar.2018.04.011

    Article  CAS  Google Scholar 

  26. M. Sarkari Khorrami, A.H. Kokabi, M. Movahedi, J. Mater. Eng. Perform. 24, 2158 (2015). https://doi.org/10.1007/s11665-015-1489-y

    Article  CAS  Google Scholar 

  27. P. Gao, Y. Zhang, K.P. Mehta, Met. Mater. Int. 27, 3085 (2021). https://doi.org/10.1007/s12540-020-00759-w

    Article  Google Scholar 

  28. B. Kuang, Y. Shen, W. Chen, X. Yao, H. Xu, J. Gao, J. Zhang, Mater. Design 68, 54 (2015). https://doi.org/10.1016/j.matdes.2014.12.008

    Article  CAS  Google Scholar 

  29. A. Ebrahimian, A.H. Kokabi, Mater. Design 116, 599 (2017). https://doi.org/10.1016/j.matdes.2016.12.057

    Article  CAS  Google Scholar 

  30. J. Yang, Y.L. Li, H. Zhang, W. Guo, Y. Zhou, Mater. Sci. Eng. A 645, 323 (2015). https://doi.org/10.1016/j.msea.2015.08.036

  31. Q. Zheng, X. Feng, Y. Shen, G. Huang, P. Zhao, J. Alloy. Compd. 686, 693 (2016). https://doi.org/10.1016/j.jallcom.2016.06.092

    Article  CAS  Google Scholar 

  32. G. Zhang, W. Su, J. Zhang, Z. Wei, Metall. Mater. Trans. A 42, 2850 (2011). https://doi.org/10.1007/s11661-011-0677-0

    Article  CAS  Google Scholar 

  33. C. Leitao, E. Arruti, E. Aldanondo, D.M. Rodrigues, Mater. Design 106, 153 (2016). https://doi.org/10.1016/j.matdes.2016.05.101

    Article  CAS  Google Scholar 

  34. Z. Zhang, Y. Yu, H. Zhao, X. Wang, Metals 9, 691 (2019). https://doi.org/10.3390/met9060691

    Article  Google Scholar 

  35. H. Zhang, J. Liu, Mater. Sci. Eng. A 528, 6179 (2011). https://doi.org/10.1016/j.msea.2011.04.039

    Article  CAS  Google Scholar 

  36. S. Deng, R. Yuan, X. Tang, F. Lu, Mater. Design 188, 108489 (2020). https://doi.org/10.1016/j.msea.2011.04.039

    Article  CAS  Google Scholar 

  37. M.-J. Hsieh, R.-T. Lee, Y.-C. Chiou, J. Mater. Process. Tech. 240, 118 (2017). https://doi.org/10.1016/j.jmatprotec.2016.08.034

    Article  CAS  Google Scholar 

  38. X. Zhou, Y. Chen, S. Li, Y. Huang, K. Hao, P. Peng, Metals 8, 922 (2018). https://doi.org/10.3390/met8110922

    Article  CAS  Google Scholar 

  39. P. Jedrasiak, H.R. Shercliff, A. Reilly, G.J. McShane, Y.C. Chen, L. Wang, J. Robson, P. Prangnell, J. Mater. Eng. Perform. 25, 4089 (2016). https://doi.org/10.1007/s11665-016-2225-y

    Article  CAS  Google Scholar 

  40. T. Küçükömeroğlu, S.M. Aktarer, G. İpekoğlu, G. Çam, Mater. Test. 60, 1163 (2018). https://doi.org/10.3139/120.111266

    Article  Google Scholar 

  41. T. Küçükömeroğlu, S.M. Aktarer, G. İpekoğlu, G. Çam, Int. J. Miner. Metall. Mater. 25, 1457 (2018). https://doi.org/10.1007/s12613-018-1700-x

    Article  CAS  Google Scholar 

  42. Y. Su, W. Li, X. Wang, T. Ma, L. Ma, X. Dou, Mater. Sci. Eng. A 764, 138251 (2019). https://doi.org/10.1016/j.msea.2019.138251

    Article  CAS  Google Scholar 

  43. G. Çam, S. Mistikoglu, M. Pakdil, Weld. J. 88, 225S (2009). https://app.aws.org/wj/supplement/WJ_2009_11_s225.pdf

  44. A. Kapil, T. Lee, A. Vivek, J. Bockbrader, T. Abke, G. Daehn, J. Mater. Process. Tech. 255, 219 (2018). https://doi.org/10.1016/j.jmatprotec.2017.12.012

    Article  CAS  Google Scholar 

  45. Y. Liang, J. Shen, S. Hu, H. Wang, J. Pang, J. Mater. Process. Tech. 255, 161 (2018). https://doi.org/10.1016/j.jmatprotec.2017.12.006

    Article  CAS  Google Scholar 

  46. Z. Ling, Y. Li, Z. Luo, S. Ao, Z. Yin, Y. Gu, Q. Chen, Int. J. Adv. Manuf. Tech. 92, 1923 (2017). https://doi.org/10.1007/s00170-017-0310-5

    Article  Google Scholar 

  47. K. Prasad Rao, N. Ramanaiah, N. Viswanathan, Mater. Design 29, 179 (2008). https://doi.org/10.1016/j.matdes.2006.10.022

    Article  Google Scholar 

  48. J. Singh, K.S. Arora, D.K. Shukla, J. Mater. Process. Tech. 283, 116728 (2020). https://doi.org/10.1016/j.jmatprotec.2020.116728

    Article  CAS  Google Scholar 

  49. G. Huang, X. Feng, Y. Shen, Q. Zheng, P. Zhao, Mater. Design 99, 403 (2016). https://doi.org/10.1016/j.matdes.2016.03.094

    Article  CAS  Google Scholar 

  50. R. Cao, J.H. Chang, Q. Huang, X.B. Zhang, Y.J. Yan, J.H. Chen, J. Manuf. Process. 31, 674 (2018). https://doi.org/10.1016/j.jmapro.2018.01.001

    Article  Google Scholar 

  51. L. Shao, Y. Shi, J.K. Huang, S.J. Wu, Mater. Design 66, 453 (2015). https://doi.org/10.1016/j.matdes.2014.06.026

    Article  CAS  Google Scholar 

  52. Z. Ding, Q. Hu, W. Lu, X. Ge, S. Cao, S. Sun, T. Yang, M. Xia, J. Li, Mater. Charact. 136, 157 (2018). https://doi.org/10.1016/j.matchar.2017.12.024

    Article  CAS  Google Scholar 

  53. S. Bozzi, A.L. Helbert-Etter, T. Baudin, B. Criqui, J.G. Kerbiguet, Mater. Sci. Eng. A 527, 4505 (2010). https://doi.org/10.1016/j.msea.2010.03.097

    Article  Google Scholar 

  54. H. Ma, G. Qin, Z. Ao, L. Wang, J. Mater. Process. Tech. 252, 595 (2018). https://doi.org/10.1016/j.jmatprotec.2017.10.015

    Article  CAS  Google Scholar 

  55. G. Qin, Z. Ao, Y. Chen, C. Zhang, P. Geng, J. Mater. Process. Tech. 273, 116255 (2019). https://doi.org/10.1016/j.jmatprotec.2019.116255

    Article  Google Scholar 

  56. I. Hejazi, S.E. Mirsalehi, T. Nonferr. Metal. Soc. China 26, 2313 (2016). https://doi.org/10.1016/S1003-6326(16)64351-0

    Article  CAS  Google Scholar 

  57. V. Zohoori-Shoar, A. Eslami, F. Karimzadeh, M. Abbasi-Baharanchi, J. Manuf. Process. 26, 84 (2017). https://doi.org/10.1016/j.jmapro.2017.02.003

    Article  Google Scholar 

  58. F. Hayat, Mater. Sci. Eng. A 556, 834 (2012). https://doi.org/10.1016/j.msea.2012.07.077

    Article  CAS  Google Scholar 

  59. G. Mathers, The Welding of Aluminium and Its Alloys (Woodhead Publishing, Sawston, 2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyyed Ehsan Mirsalehi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised due to the graphic abstract was appeared in PDF, it should be ignored from the PDF, and the graphic abstract will be available only in XML version.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradi, K., Mirsalehi, S.E. Dissimilar Joining of Low-Carbon Steel to 6061-T6 Aluminum Alloy by Novel Method of Pinless Friction Stir Spot Welding-Brazing. Met. Mater. Int. 29, 174–190 (2023). https://doi.org/10.1007/s12540-022-01204-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-022-01204-w

Keywords

Navigation