Skip to main content
Log in

Microstructure and mechanical properties of friction-stir welded St52 steel joints

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

The aim of this work is to investigate the mechanical properties and microstructures of friction-stir welded (FSWed) St52 structural steel joints. In this study, St52 steel plates with a thickness of 4 mm were butt-welded by friction-stir welding (FSW) using a tungsten carbide tool having a conical pin. The microstructure of the welded zone consists of equiaxed fine ferrite, grain boundary ferrite, Widmanstatten ferrite, and aggregates of ferrite + cementite. The microhardness measurements showed that the hardness of the welded zone was significantly higher than that of the base metal. The FSWed St52 joint exhibited a significant strength overmatching in the weld region and a strength performance similar to or slightly higher than that of the base plate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.M.N. Thomas, E.D. Nicholas, C. Needham, M.G. Murch, P. Templesmith, and C.J. Dawes, Friction Stir Butt Welding, Int. Patent Appl. PCT/GB92/02203 and GB Patent Appl. 9125978.8, 1991, and US Patent Appl. 5460317, 1995.

    Google Scholar 

  2. R.S. Mishra and Z.Y. Ma, Friction stir welding and processing, Mater. Sci. Eng. R, (50)2005, No. 1–2, p. 1.

    Book  Google Scholar 

  3. G. Çam and G. İpekoğlu, Recent developments in joining of aluminium alloys, Int. J. Adv. Manuf. Technol., 91(2017), No. 5–8, p. 1851.

    Article  Google Scholar 

  4. G. Çam, Friction stir welded structural materials: beyond Al–alloys, Int. Mater. Rev., 56(2011), No. 1, p. 1.

    Article  Google Scholar 

  5. G. Çam, G. İpekoğlu, T. Küçükömeroğlu, and S.M. Aktarer, Applicability of friction stir welding to steels, J. Achv. Mater. Manuf. Eng., 80(2017), No. 2, p. 65.

    Google Scholar 

  6. R. Nandan, T. DebRoy, and H.K.D.H. Bhadeshia, Recent advances in friction–stir welding–Process, weldment structure and properties, Prog. Mater. Sci., 53(2008), No. 6, p. 980.

    Article  Google Scholar 

  7. J.A. Esparza, W.C. Davis, E.A. Trillo, and L.E. Murr, Friction–stir welding of magnesium alloy AZ31B, J. Mater. Sci. Lett., 21(2002), No. 12, p. 917.

    Article  Google Scholar 

  8. S. Rajakumar, A. Razalrose, and V. Balasubramanian, Friction stir welding of AZ61A magnesium alloy, Int. J. Adv. Manuf. Technol., 68(2013), No. 1–4, p. 277.

    Article  Google Scholar 

  9. Y. Templeman, G.B. Hamu, and L. Meshi, Friction stir welded AM50 and AZ31Mg alloys: Microstructural evolution and improved corrosion resistance, Mater. Charact., 126(2017), p. 86.

    Article  Google Scholar 

  10. W.M. Thomas, P.L. Threadgill, and E.D. Nicholas, Feasibility of friction stir welding steel, Sci. Technol. Weld. Joining, 4(1999), No. 6, p. 365.

    Article  Google Scholar 

  11. M. Jafari, M. Abbasi, D. Poursina, A. Gheysarian, and B. Bagheri, Microstructures and mechanical properties of friction stir welded dissimilar steel–copper joints, J. Mech. Sci. Technol., 31(2017), No. 3, p. 1135.

    Article  Google Scholar 

  12. F.C. Liu, Y. Hovanski, M.P. Miles, C.D. Sorensen, and T.W. Nelson, A review of friction stir welding of steels: Tool, material flow, microstructure, and properties, J. Mater. Sci. Techol., (34)2018, No. 1, p. 39.

  13. H.H. Liu and H. Fujii, Microstructural and mechanical properties of a beta–type titanium alloy joint fabricated by friction stir welding, Mater. Sci. Eng. A, 711(2018), p. 140.

    Article  Google Scholar 

  14. S. Mironov, Y.S. Sato, and H. Kokawa, Friction–stir welding and processing of Ti−6Al−4V titanium alloy: A review, J. Mater. Sci. Techol., 34(2018), No. 1, p. 58.

    Article  Google Scholar 

  15. P. Edwards and M. Ramulu, Fatigue performance of friction stir welded titanium structural joints, Int. J. Fatigue, 70(2015), p. 171.

    Article  Google Scholar 

  16. H. Fujii, L. Cui, N. Tsuji, M. Maeda, K. Nakata, and K. Nogi, Friction stir welding of carbon steels, Mater. Sci. Eng. A, 429(2006), No. 1–2, p. 50.

    Article  Google Scholar 

  17. T.J. Lienert, W.L. Stellwag, B.B. Grimmett, and R.W. Warke, Friction stir welding studies on mild steel − Process results, microstructures, and mechanical properties are reported, Weld. J., 82(2003), No. 1, p. 1–S.

    Article  Google Scholar 

  18. L. Cui, H. Fujii, N. Tsuji, and K. Nogi, Friction stir welding of a high carbon steel, Scripta Mater., 56(2007), No. 7, p. 637.

    Article  Google Scholar 

  19. M. Imam, R. Ueji, and H. Fujii, Microstructural control and mechanical properties in friction stir welding of medium carbon low alloy S45C steel, Mater. Sci. Eng. A, 636(2015), p. 24.

    Article  Google Scholar 

  20. H. Fujii, R. Ueji, Y. Takada, H. Kitahara, N. Tsuji, K. Nakata, and K. Nogi, Friction stir welding of ultrafine grained interstitial free steels, Mater. Trans., 47(2006), No. 1, p. 239.

    Article  Google Scholar 

  21. L.F. Cui, H. Fujii, N. Tsuji, K. Nakata, K. Nogi, R. Ikeda, and M. Matsushita, Transformation in stir zone of friction stir welded carbon steels with different carbon contents, ISIJ Int., 47(2007), No. 2, p. 299.

    Article  Google Scholar 

  22. A.J. Ozekcin, H.W. Jin, J.Y. Koo, N.V. Bangaru, R. Ayer, G. Vaughn, R. Steel, and S. Packer, A microstructural study of friction stir welded joints of carbon steels, Int. J. Offshore Polar Eng., 14(2004). No. 4, p. 284.

  23. D.H. Choi, C.Y. Lee, B.W. Ahn, Y.M. Yeon, S.H.C. Park, Y.S. Sato, H. Kokowa, and S.B. Jung, Effect of fixed location variation in friction stir welding of steels with different carbon contents, Sci. Technol. Weld. Joining, 15(2010), No. 4, p. 299.

    Article  Google Scholar 

  24. D.H. Choi, B.W. Ahn, Y.M. Yeon, S.H.C. Park, Y.S. Sato, H. Kokowa, and S.B. Jung, Microstructural characterizations following friction stir welding of dissimilar alloys of low–and high–carbon steels, Mater. Trans., 52(2011), No. 7, p. 1500.

    Article  Google Scholar 

  25. P.L. Threadgill, Terminology in friction stir welding, Sci. Technol. Weld. Joining, 12(2007), No. 4, p. 357.

    Article  Google Scholar 

  26. P. Movahed, S. Kolahgar, S.P.H. Marashi, M. Pouranvari, and N. Parvin, The effect of intercritical heat treatment temperature on the tensile properties and work hardening behavior of ferrite–martensite dual phase steel sheets, Mater. Sci. Eng. A, 518(2009), No. 1–2, p. 1.

    Article  Google Scholar 

  27. G. Thewlis, Classification and quantification of microstructures in steels, Mater. Sci. Techol., 20(2004), No. 2, p. 143.

    Article  Google Scholar 

  28. M. Jafarzadegan, A.H. Feng, A. Abdollah–zadeh, T. Saeid, J. Shen, and H. Assadi, Microstructural characterization in dissimilar friction stir welding between 304 stainless steel and St37 steel, Mater. Charact., 74(2012), p. 28.

    Article  Google Scholar 

  29. G. Çam, Ç. Yeni, S. Erim, V. Ventzke, and M. Koçak, Investigation into properties of laser welded similar and dissimilar steel joints, Sci. Technol. Weld. Joining, 3(1998), No. 4, p. 177.

    Article  Google Scholar 

  30. G. Çam, G. İpekoğlu, and H.T. Serindağ, Effects of use of higher strength interlayer and external cooling on properties of friction stir welded AA6061–T6 joints, Sci. Technol. Weld. Joining, 19(2014), No. 8, p. 715.

    Article  Google Scholar 

  31. G. İpekoğlu, S. Erim, and G. Çam, Investigation into the influence of post–weld heat treatment on the friction stir welded AA6061 Al–alloy plates with different temper conditions, Metall. Mater. Trans. A, 45(2014), No. 2, p. 864.

    Google Scholar 

  32. G. İpekoğlu, S. Erim, B. G. Kıral, and G. Çam, Investigation into the effect of temper condition on friction stir weldability of AA6061 Al–alloy plates, Kovove Mater., 51(2013), No. 3, p. 155.

    Google Scholar 

  33. G. İpekoğlu, B.G. Kıral, S. Erim, and G. Çam, Investigation of the effect of temper condition on friction stir weldability of AA7075 Al–alloy plates, Mater. Tehnol., 46(2012), No. 6, p. 627.

    Google Scholar 

  34. G. Çam, S. Güçlüer, A. Çakan, and H.T. Serindağ, Mechanical properties of friction stir butt–welded Al–5086H32 plate, Materialwiss. Werkstofftech., 40(2009), No. 8, p. 638.

    Article  Google Scholar 

  35. G. Çam, V. Ventzke, J.F. Dos Santos, M. Koçak, G. Jennequin, P. Gonthier–Maurin, M. Penasa, and C. Rivezla, Characterization of laser and electron beam welded Al–alloys, Prakt. Metallogr., 37(2000), No. 2, p. 59.

    Google Scholar 

  36. G. Çam, V. Ventzke, J.F. Dos Santos, M. Koçak, G. Jennequin, and P. Gonthier–Maurin, Characterisation of electron beam welded aluminium alloys, Sci. Technol. Weld. Joining, 4(1999), No. 5, p. 317.

    Article  Google Scholar 

  37. T. Küçükömeroğlu, E. Şentürk, L. Kara, G. İpekoğlu, and G. Çam, Microstructural and mechanical properties of friction stir welded nickel–aluminum bronze (NAB) alloy, J. Mater. Eng. Perform., 25(2016,) No. 1, p. 320.

  38. G. Çam, S. Mistikoglu, and M. Pakdil, Microstructural and mechanical characterization of friction stir butt joint welded 63%Cu−37%Zn brass plate, Weld. J., 88(2009), No. 11, p. 225S.

    Google Scholar 

  39. G. Çam, H.T. Serindag, A. Çakan, S. Mistikoglu, and H. Yavuz, The effect of weld parameters on friction stir welding of brass plates, Materialwiss. Werkstofftech., 39(2008), No. 6, p. 394.

    Article  Google Scholar 

  40. X.C. He, F.S. Gu, and A. Ball, A review of numerical analysis of friction stir welding, Prog. Mater. Sci., 65(2014), p. 1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Güven İpekoğlu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Küçükömeroğlu, T., Aktarer, S.M., İpekoğlu, G. et al. Microstructure and mechanical properties of friction-stir welded St52 steel joints. Int J Miner Metall Mater 25, 1457–1464 (2018). https://doi.org/10.1007/s12613-018-1700-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-018-1700-x

Keywords

Navigation