Skip to main content
Log in

Hole Expansion Characteristics of W-Tempered 7075 Aluminum Alloy Sheet in Comparison with Peak Aged T6 Tempered Alloy Sheet

  • Published:
Metals and Materials International Aims and scope Submit manuscript

A Correction to this article was published on 18 March 2023

This article has been updated

Abstract

The hole expansion formability of W-tempered aluminum 7075 sheet, which is prepared by solution heat treatment and rapid cooling, is investigated comparatively with the peak aged T6 tempered alloy. The W temper heat treatment has been known to be a potential application to cold forming of high strength aluminum including 7075 alloy as an alternative to the warm or hot forming process. The hole expansion tests are designed with a conical punch and the holes are fabricated using wire-cut and punching. Basic mechanical properties and microstructure analyses are performed to study the effect of the strength and ductility in tension on the hole expansion ratios of specimens with different tempers and hole conditions. From the experimental study, the following conclusions are mainly reached. (1) The W-tempered sheets show much improved HER than T6 tempered sheets; i.e., 31 (T6) vs. 58% (W) for wire-cut hole and 19 (T6) vs. 57% (W) for punched hole. (2) The HER of W-tempered sheets show very similar HER values between wire-cut and punched hole specimens, which has not been commonly reported. (3) The initiation of cracks at hole edges is different depending on hole preparation; i.e., RD or TD (wire-cut T6 and wire-cut and punched W) vs. RD, DD, and TD (punched T6). (4) The KAM map validates the cause of lower HER of punched specimen attributes to earlier crack initiation by prior plastic deformation during punching, but the strengthening of shear affected zone has limited effect on HER. (5) The HERs of T6 and W tempered sheets are well correlated to the yield strength, ultimate tensile strength, and total elongation. However, the effect of post uniform elongation on HER is not correlated to the existing report.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Change history

References

  1. A. Smeyers, B. Schepers, W. Braunschweig, A. Burger, K. Vieregge, S. Khosla, A. Wise, 7xxx Grades for Automotive Applications. Alum. Int. Today 23, 37 (2011)

    Google Scholar 

  2. T. Dursun, C. Soutis, Recent developments in advanced aircraft aluminium alloys. Mater. Design 56, 862 (2014)

    Article  CAS  Google Scholar 

  3. E.A. Starke, J.T. Staley, Application of modern aluminum alloys to aircraft. Prog Aerosp. Sci. 32, 131 (1996)

    Article  Google Scholar 

  4. W. Gan, H.J. Bong, H. Lim, R.K. Boger, F. Barlat, R.H. Wagoner, Mechanism of the Bauschinger effect in Al-Ge-Si alloys. Mater. Sci. Eng. A 684, 353 (2017)

    Article  CAS  Google Scholar 

  5. N. Lutsey, Cost-Effectiveness Assessment of Low-Carbon Vehicle and Fuel Technologies. Transport. Res. Rec. 2191, 90 (2010)

    Article  Google Scholar 

  6. M. Kumar, G. Kirov, F. Grabner, E. Mukeli, Sheet forming processes for AW-7xxx alloys: Relevant process parameters. Mater. Sci. Forum 879, 1036 (2016)

    Article  Google Scholar 

  7. H. Wang, Y.B. Luo, P. Friedman, M.H. Chen, L. Gao, Warm forming behavior of high strength aluminum alloy AA7075. T. Nonferr. Metal. Soc. China 22, 1 (2012)

    Article  Google Scholar 

  8. H. Karbasian, A.E. Tekkaya, A review on hot stamping. J. Mater. Process. Tech. 210, 2103 (2010)

    Article  CAS  Google Scholar 

  9. N.R. Harrison, S.G. Luckey, Hot Stamping of a B-Pillar Outer from High Strength Aluminum Sheet AA7075. SAE. Int. J. Mater. Manf. 7, 567 (2014)

    Google Scholar 

  10. M.R. Rokni, A. Zarei-Hanzaki, A.A. Roostaei, H.R. Abedi, An investigation into the hot deformation characteristics of 7075 aluminum alloy. Mater. Design 32, 2339 (2011)

    Article  CAS  Google Scholar 

  11. E. Romhanji, M. Popović, D. Glišić, M. Stefanović, M. Milovanović, On the {Al-Mg} alloy sheets for automotive application: problems and solutions. Metalurgija 10, 205 (2004)

    Google Scholar 

  12. K. Zheng, D.J. Politis, L. Wang, J. Lin, A review on forming techniques for manufacturing lightweight complex?shaped aluminium panel components. Int. J. Lightweight Mater. Manuf. 1, 55 (2018)

    Article  Google Scholar 

  13. O.N. Senkov, M.R. Shagiev, S.V. Senkova, D.B. Miracle, Precipitation of Al3(Sc,Zr) particles in an Al-Zn-Mg-Cu-Sc-Zr alloy during conventional solution heat treatment and its effect on tensile properties. Acta Mater. 56, 3723 (2008)

    Article  CAS  Google Scholar 

  14. M. Kumar, N.G. Ross, Influence of temper on the performance of a high-trength Al-Zn-Mg alloy sheet in the warm forming processing chain. J. Mater. Process. Tech. 231, 189 (2016)

    Article  CAS  Google Scholar 

  15. Y. Choi, J. Lee, S.S. Panicker, H.-K. Jin, S.K. Panda, M.-G. Lee, Mechanical properties, springback, and formability of W-temper and peak aged 7075 aluminum alloy sheets: Experiments and modeling. Int. J. Mech. Sci. 170, 105344 (2020)

    Article  Google Scholar 

  16. C. Moon, S. Thuillier, J. Lee, M.-G. Lee, Mechanical properties of solution heat treated Al-Zn-Mg-Cu (7075) alloy under different cooling conditions: Analysis with full field measurement and finite element modeling. J. Alloy. Compd. 856, 158180 (2021)

    Article  CAS  Google Scholar 

  17. A. Portevin, F. Le Chatelier, C. R. Hebd. Acad. Sci. 176, 507 (1923)

    CAS  Google Scholar 

  18. F. Savart, Ann. Chim. Phys. 65, 337 (1837)

  19. A.P. Masson, Ann. Chim. Phys. (Troisième Série) 3, 451 (1841)

  20. P.G. McCormick, The {Portevin-Le Chatelier} effect in a pressurized low carbon steel. Acta Metall. 21, 873 (1973)

    Article  CAS  Google Scholar 

  21. S.H. van den Brink, A. van den Beukel, P.G. McCormick, Strain rate sensitivity and the {Portevin-Le Chatelier} effect in {Au-Cu} alloys. Phys. Status Solidi A 30, 469 (1975)

    Article  Google Scholar 

  22. A.H. Cottrell, B.A. Bilby, Proc. Phys. Soc. A 62, 49 (1949)

  23. H. Halim, D.S. Wilkinson, M. Niewczas, The Portevin?Le Chatelier (PLC) effect and shear band formation in an AA5754 alloy. Acta Mater. 55, 4151 (2007)

    Article  CAS  Google Scholar 

  24. J. Kang, D.S. Wilkinson, M. Jain, J.D. Embury, A.J. Beaudoin, S. Kim, R. Mishira, A.K. Sachdev, On the sequence of inhomogeneous deformation processes occurring during tensile deformation of strip cast AA5754. Acta Mater. 54, 209 (2006)

    Article  CAS  Google Scholar 

  25. G.I. Taylor, The formation and enlargement of a circular hole in a thin plastic sheet. Q. J. Mech. Appl. Math. 1, 103 (1948)

    Article  Google Scholar 

  26. Z. Cui, L. Gao, Studies on hole-flanging process using multistage incremental forming. CIRP J. Manuf. Sci. Technol. 2, 124 (2010)

    Article  Google Scholar 

  27. G. Centeno, M.B. Silva, V.A.M. Cristino, C. Vallellano, P.A.F. Martins, Hole-flanging by incremental sheet forming. Int. J. Mach. Tools Manuf. 59, 46 (2012)

    Article  Google Scholar 

  28. S.K. Paul, A critical review on hole expansion ratio. Materialia 9, 100566 (2020)

    Article  CAS  Google Scholar 

  29. K. Prasad, B. Venkatesh, H. Krishnaswamy, D.K. Banerjee, U. Chakkingal, On the interplay of friction and stress relaxation to improve stretch-flangeability of dual phase (DP600) steel. CIRP J. Manuf. Sci. Technol. 32, 154 (2021)

    Article  Google Scholar 

  30. Y. Yamada, M. Koide, Analysis of the bore-expanding test by the incremental theory of plasticity. Int. J. Mech. Sci. 10, 1 (1968)

    Article  Google Scholar 

  31. S. Sadagopan, D. Urban, C. Wong, M. Huang, B. Yan, Technical Report, DE-FC07-97ID13554 (U.S. Department of Energy, Washington, 2003)

  32. S.K. Paul, J. Mater. Non-linear correlation between uniaxial tensile properties and shear-edge hole expansion ratio. Eng. Perform. 23, 3610 (2014)

    Article  CAS  Google Scholar 

  33. X. Chen, H. Jiang, Z. Cui, C. Lian, C. Lu, Procedia Engineer. 81, 718 (2014)

  34. N.M. Wang, M.L. Wenner, An analytical and experimental study of stretch flanging. Int. J. Mech. Sci. 16, 135 (1974)

    Article  Google Scholar 

  35. L. Chen, J.-K. Kim, S.-K. Kim, G.-S. Kim, K.-G. Chin, B.C. De Cooman, Stretch-flangeability of high Mn TWIP steel. Steel Res. Int. 81, 552 (2010)

    Article  CAS  Google Scholar 

  36. J.H. Kim, E.J. Seo, M.-H. Kwon, S. Kang, B.C. De Cooman, Effect of quenching temperature on stretch flangeability of a medium Mn steel processed by quenching and partitioning. Mater. Sci. Eng. A 729, 276 (2018)

    Article  CAS  Google Scholar 

  37. N. Pathak, C. Butcher, M. Worswick, Assessment of the critical parameters influencing the edge stretchability of advanced high-strength steel sheet. J. Mater. Eng. Perform. 25, 4919 (2016)

    Article  CAS  Google Scholar 

  38. P. Larour, J. Freudenthaler, M. Kerschbaum, D. Dolzer, Edge crack sensitivity versus tensile local ductility of AHSS sheet steels. IOP Conf. Ser. Mater. Sci. Eng. 967, 012080 (2020)

  39. J.I. Yoon, J. Jung, H.H. Lee, G.-S. Kim, H.S. Kim, Factors governing hole expansion ratio of steel sheets with smooth sheared edge. Met. Mater. Int. 22, 1009 (2016)

    Article  CAS  Google Scholar 

  40. J. Lee, S.-J. Lee, B.C. De Cooman, Effect of micro-alloying elements on the stretch-flangeability of dual phase steel. Mater. Sci. Eng. A 536, 231 (2012)

    Article  CAS  Google Scholar 

  41. S.K. Paul, P. I. Mech. Eng. B J. Eng. Manuf. 234, 671 (2020)

  42. J.I. Yoon, J. Jung, J.G. Kim, S.S. Sohn, S. Lee, H.S. Kim, Fracture Toughness to Understand Stretch-Flangeability and Edge Cracking Resistance in AHSS. J. Mater. Sci. 52, 7808 (2017)

    Article  CAS  Google Scholar 

  43. D. Casellas, A. Lara, D. Frómeta, D. Gutiérrez, S. Molas, L. Pérez, J. Rehrl, C. Suppan, Key factors of stretch-flangeability of sheet materials. Metall. Mater. Trans. A 48, 86 (2017)

    Article  CAS  Google Scholar 

  44. S.K. Paul, M. Mukherjee, S. Kundu, S. Chandra, Prediction of hole expansion ratio for automotive grade steels. Comp. Mater. Sci. 89, 189 (2014)

    Article  CAS  Google Scholar 

  45. Y. Choi, J. Ha, M.-G. Lee, Y.P. Korkolis, Effect of plastic anisotropy and Portevin-Le Chatelier bands on hole-expansion in AA7075 sheets in -T6 and -W tempers. J. Mater. Process. Tech. 296, 117211 (2021)

    Article  CAS  Google Scholar 

  46. A. Karelova, C. Krempaszky, E. Werner, P. Tsipouridis, T. Hebesberger, A. Pichler, Hole expansion of dual-phase and complex-phase AHS steels - Effect of edge conditions. Steel Res. Int. 80, 71 (2009)

    CAS  Google Scholar 

  47. Y.K. Ko, J.S. Lee, H. Huh, H.K. Kim, S.H. Park, Prediction of fracture in hubhole expanding process using a new ductile fracture criterion. J. Mater. Process. Tech. 187-188, 358 (2007)

    Article  Google Scholar 

  48. A. Konieczny, T. Henderson, On formability limitations in stamping involving sheared edge stretching. SAE Transactions 116, 20 (2007)

    Google Scholar 

  49. K. Wang, L. Greve, T. Wierzbicki, FE simulation of edge fracture considering pre-damage from blanking process. Int. J. Solids Struct. 71, 206 (2015)

    Article  CAS  Google Scholar 

  50. Y. Choi, C. Moon, M.-G. Lee, Experimental study on the mechanical properties of 7xxx aluminium alloy sheet under different heat treatment conditions. IOP. Conf. Ser. Mater. Sci. Eng. 651, 012080 (2019)

  51. J. Lee, H.J. Bong, D. Kim, Y.-S. Lee, Y. Choi, M.-G. Lee, Mechanical properties and formability of heat-treated 7000-series high-strength aluminum alloy: experiments and finite element modeling. Met. Mater. Int. 26, 682 (2020)

    Article  CAS  Google Scholar 

  52. G. Peng, K. Chen, S. Chen, H. Fang, Evolution of the second phase particles during the heating-up process of solution treatment of Al?Zn?Mg?Cu alloy. Mater. Sci. Eng. A 641, 237 (2015)

    Article  CAS  Google Scholar 

  53. Y.-W. Kim, Y.-H. Jo, Y.-S. Lee, H.-W. Kim, J.-I. Lee, Effect of dissolution of η’ precipitates on mechanical properties of A7075-T6 Alloy. Korean J. Met. Mater. 60, 83 (2022)

    Article  CAS  Google Scholar 

  54. O.R. Terrazas, Correlation of microstructure, tensile properties and hole expansion ratio in cold rolled advanced high strength steels, M.S. Thesis, Colorado School of Mines (2016)

  55. J. Lee, H.J. Bong, D. Kim, Y.-S. Lee, Y. Choi, M.-G. Lee, Application of Combined W-Temper and Cold Forming Technology to High-Strength Aluminum Alloy Automotive Parts. JOM 71, 4393 (2019)

    Article  CAS  Google Scholar 

  56. K. Mori, Y. Abe, Y. Suzui, Improvement of stretch flangeability of ultra high strength steel sheet by smoothing of sheared edge. J. Mater. Process. Tech. 210, 653 (2010)

    Article  Google Scholar 

  57. M. Madrid, C.J. Van Tyne, S. Sadagopan, E.J. Pavlina, J. Hu, K.D. Clarke, Effects of testing method on stretch-flangeability of dual-phase 980/1180 steel grades. JOM 70, 918 (2018)

    Article  CAS  Google Scholar 

  58. V. Kumar Barnwal, S.-Y. Lee, S.-Y. Yoon, J.-H. Kim, F. Barlat, Fracture characteristics of advanced high strength steels during hole expansion test. Int. J. Fracture 224, 217 (2020)

    Article  Google Scholar 

  59. J.W. Hutchinson, K.W. Neale, Influence of strain-rate sensitivity on necking under uniaxial tensio. Acta Metall. 25, 839 (1977)

    Article  CAS  Google Scholar 

  60. A.K. Ghosh, Strain localization in the diffuse neck in sheet metal. Metall. Mater. Tran. B 5, 1607 (1974)

    Article  CAS  Google Scholar 

  61. T.K. Eller, L. Greve, M. Andres, M. Medricky, V.T. Meinders, A.H. van den Boogaard, Determination of strain hardening parameters of tailor hardened boron steel up to high strains using inverse FEM optimization and strain field matching. J. Mater. Process. Tech. 228, 43 (2016)

    Article  CAS  Google Scholar 

  62. K. Ishikawa, Fractals in dimple patterns of ductile fracture. J. Mater. Sci. Lett. 9, 400 (1990)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors sincerely acknowledge the assistance of Siwook Park, Woojin Cho, and Jongbeom Kim for experiments at SNU. MGL appreciates the partial support by KEIT (No. 20010717) and the Institute of Engineering Research at Seoul National University. JWL and HJB appreciate the partial support by the Fundamental Research Program of the Korea Institute of Materials Science (KIMS, PNK8440).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myoung-Gyu Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised due to the graphic abstract was missing and it has been updated.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, Y., Lee, J., Bong, H. et al. Hole Expansion Characteristics of W-Tempered 7075 Aluminum Alloy Sheet in Comparison with Peak Aged T6 Tempered Alloy Sheet. Met. Mater. Int. 29, 157–167 (2023). https://doi.org/10.1007/s12540-022-01201-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-022-01201-z

Keywords

Navigation