Skip to main content
Log in

Effect of Strain Induced Melt Activation Process on the Microstructure and Mechanical Properties of Al-5Ti-1B Treated Al-7Si Alloy

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In this study, simultaneous effects of modified strain induced melt activation (M-SIMA) process and addition of Al-5Ti-1B chemical grain refiner on the casting defects, microstructural features, and mechanical properties of hypoeutectic Al-7Si alloys are investigated. The traditional melting and casting techniques were used to develop cast ingots of unrefined and grain refined structures of Al-7Si alloy. Addition of chemical refiner Al-5Ti-1B to Al-7Si melt could significantly change the secondary dendritic arm spacing and eutectic Si particle size to 31% and 28%, respectively. In the M-SIMA process, cast ingots were 60% warm deformed and heat-treated at mushy zone at temperature 585 °C for 30 min. Spherical morphology of α-Al grain and fine fibrous type eutectic Si are observed after M-SIMA process. Grain size of α-Al and eutectic Si are further reduced to 56% and 40% after M-SIMA process of grain refined Al-7Si alloy. Porosity and micro-cracks are also minimized after M-SIMA process. Microstructural features of cast and M-SIMA processed alloys were characterized through optical and scanning electron microscopy. X-ray diffraction techniques reveal the different phases present in the developed alloy. TEM analysis further confirms the presence of TiAl3 and Ti7Al5Si14 precipitates in grain refined Al-7Si alloy. A significant improvement of 132% in hardness (HV), 76% in yield strength, 120% in ultimate tensile strength, 125% in elongation to fracture, and 116% in specific ultimate tensile strength are obtained in M-SIMA processed grain refined Al-7Si alloy. Fractography analysis reveals the mixed mode of fracture in M-SIMA processed Al-7Si alloy with refined structure compared to brittle fracture of unrefined cast alloy.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Q.G. Wang, Metall. Mater. Trans. A 35, 2707 (2004)

    Article  CAS  Google Scholar 

  2. C.M. Dinnis, A.K. Dahle, J.A. Taylor, Mater. Sci. Eng. A 392, 440 (2005)

    Article  Google Scholar 

  3. O. Elsebaie, A.M. Samuel, F.H. Samuel, J. Mater. Sci. 46, 3027 (2011)

    Article  CAS  Google Scholar 

  4. S.M. Jigajinni, K. Venkateswarlu, S.A. Kori, Met. Mater. Int. 19, 171 (2013)

    Article  CAS  Google Scholar 

  5. S.H.S. Ebrahimi, M. Emamy, Mater. Design 31, 200 (2010)

    Article  CAS  Google Scholar 

  6. S.A. Metz, M.C. Flemings, A fundamental study of hot tearing, in Proceedings of the Merton C. Flemings Symposium on Solidification and Materials Processing (USA Publishers, Cambridge, MA, 2001), pp. 181–188

  7. A.K. Dahle, P.A. Tondel, C.J. Paradies, L. Arnberg, Metall. Mater. Trans. A 27, 2305 (1996)

    Article  Google Scholar 

  8. F.R. Mollard, M.C. Flemings, E.F. Niyama, JOM 39, 34 (1987)

    CAS  Google Scholar 

  9. P.C. Meena, A. Sharma, S. Singh, La Metallurgical Italiana 107, 25 (2015)

    Google Scholar 

  10. A.K.P. Rao, K. Das, B.S. Murty, M. Chakraborty, Wear 257, 148 (2004)

    Article  CAS  Google Scholar 

  11. T.R. Ramachandran, P.K. Sharma, K. Balasubramanian, Grain refinement of light alloys, in Proceedings of 68th World Foundry Congress, Chennai, 7-10 February (Curran Associates, Red Hook, 2008), pp. 189–193

  12. P.S. Mohanty, J.E. Gruzleski, Acta Mater. 44, 3749 (1996)

    Article  CAS  Google Scholar 

  13. L.L. Rokhlin, T.V. Dobatkina, N.R. Bochvar, E.V. Lysova, J. Alloy. Compd. 367, 10 (2004)

    Article  CAS  Google Scholar 

  14. B.S. Murty, S.A. Kori, M. Chakraborty, Int. Mater. Rev. 47, 3 (2002)

    Article  CAS  Google Scholar 

  15. G.P. Jones, J. Pearson, Metall. Trans. B 7, 223 (1976)

    Article  Google Scholar 

  16. T. Chandrashekar, M.K. Muralidhara, K.T. Kashyap, P.R. Rao, Int. J. Adv. Manuf. Tech. 40, 234 (2009)

    Article  Google Scholar 

  17. E. Tzimas, A. Zavaliangos, Acta Mater. 47, 517 (1999)

    Article  CAS  Google Scholar 

  18. M. Emamy, A. Razaghian, M. Karshenas, Mater. Design 46, 824 (2013)

    Article  CAS  Google Scholar 

  19. M.-A. Xia, H.-X. Zheng, S. Yuan, J.-G. Li, Mater. Design 26, 343 (2005)

    Article  CAS  Google Scholar 

  20. M. Alipour, B.G. Aghdam, H.E. Rahnoma, M. Emamy, Mater. Design 46, 766 (2013)

    Article  CAS  Google Scholar 

  21. K.L. Sahoo, P. Poddar, R. Kumar, P.T. Pushp, Trans. Indian Inst. Met. 62, 275 (2009)

    Article  CAS  Google Scholar 

  22. J.G. Wang, H.Q. Lin, Y.Q. Li, Q.C. Jiang, J. Alloy. Compd. 457, 251 (2008)

    Article  CAS  Google Scholar 

  23. Y.B. Song, K.-T. Park, C.P. Hong, Mater. Trans. 47, 1250 (2006)

    Article  CAS  Google Scholar 

  24. P.S. Mohanty, J.E. Gruzleski, Acta Metall. Mater. 43, 2001 (1995)

    Article  CAS  Google Scholar 

  25. C.R. de Farias Azevedo, H.M. Flower, Mater. Sci. Tech. 16, 372 (2000)

    Article  Google Scholar 

  26. L.F. Mondolfo, Aluminum Alloys: Structure and Properties (Butterworths, London, 1976), pp. 385–387

    Book  Google Scholar 

  27. M. Zeren, E. Karakulak, J. Alloy. Compd. 450, 255 (2008)

    Article  CAS  Google Scholar 

  28. S. Ashouri, M. Nili-Ahmadabadi, M. Moradi, M. Iranpour, J. Alloy. Compds. 466, 67 (2008)

    Article  CAS  Google Scholar 

  29. G.-L. Zhu, D. Shu, Y.-B. Dai, J. Wang, B.-D. Sun, Acta Phys. Sin. 58, S210 (2009)

    Article  Google Scholar 

  30. A.E.H. Badia, B. Aboubakr, A. Mohammed, Arch. Metall. Mater. 65, 385 (2020)

    Google Scholar 

  31. A.B. Pattnaik, S. Das, B.B. Jha, N. Prasanth, J. Mater. Res. Technol. 4, 171 (2015)

    Article  CAS  Google Scholar 

  32. M. Gurtaran, M. Uludag, SN Appl. Sci. 2, 1833 (2020)

    Article  Google Scholar 

  33. P. Tan, Y. Yang, Y. Sui, Q. Wang, Y. Jiang, J. Alloy. Compd. 809, 151856 (2019)

    Article  CAS  Google Scholar 

  34. Y. Zhang, F. Yan, Y. Zhao, C. Song, H. Hou, Mater. Res. Express 7, 036526 (2020)

    Article  CAS  Google Scholar 

  35. D.M. Stefanescu, Science and Engineering of Casting Solidification (Springer, Boston, 2002)

    Google Scholar 

  36. R.K. Yajjala, N.M. Inampudi, B.R. Jinugu, J. Mater. Res. Technol. 9, 6257 (2020)

    Article  CAS  Google Scholar 

  37. L. Ceschini, A. Morri, A. Morri, A. Gamberini, S. Messieri, Mater. Design 30, 4525 (2009)

    Article  CAS  Google Scholar 

  38. E. Ghassemalia, M. Riestraa, T. Bogdanoffa, B.S. Kumar, S. Seifeddinea, Procedia Engineer. 207, 19 (2017)

    Article  Google Scholar 

  39. B. Marini, F. Mudry, A. Pineau, Eng. Fract. Mech. 22, 989 (1985)

    Article  CAS  Google Scholar 

  40. A. Pineau, Philos. Trans. R. Soc. A 373, 20140131 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the authority of the National Institute of Technology (NIT), Durgapur, and CSIR-National Metallurgical Laboratory (CSIR-NML), Jamshedpur, for their permission to carry out this research work as a joint venture of these two establishments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Durbadal Mandal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5211 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhary, C., Bar, H.N., Pramanick, A.K. et al. Effect of Strain Induced Melt Activation Process on the Microstructure and Mechanical Properties of Al-5Ti-1B Treated Al-7Si Alloy. Met. Mater. Int. 28, 2529–2542 (2022). https://doi.org/10.1007/s12540-021-01154-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-021-01154-9

Keywords

Navigation