Skip to main content
Log in

Tensile Properties of Additively Manufactured C-18150 Copper Alloys

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The effect of aging processes on the tensile properties of C-18150 copper alloy samples, made by laser powder-bed-fusion additive manufacturing (AM) process with three different fabrication orientations (horizontal, angled, and vertical to the build direction), are investigated. For the as-fabricated C-18150 AM parts, horizontal and angled fabrication directions result in marginally better tensile strengths and much improved strain-to-failure values than those of vertically built AM parts. After the aging treatment, tensile strength can be significantly enhanced with a sacrifice of the strain-to-failure value. Moreover, the highest tensile strength is achieved by treating the as-fabricated samples at an aging temperature of 500 °C for 2 h. At 800 °F (427 °C), both tensile strength and ductility are smaller than low temperature values (room temperature and 400 °F/ 204 °C). Phase constituents, microstructure, and composition distribution of the AM parts are characterized to gain insight into the measured tensile properties.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. P.R. Gradl, C.S. Protz, D.L. Ellis, S.E. Greene, Progress in Additively Manufactured Copper-Alloy GRCop-84, GRCop-42, and Bimetallic Combustion Chambers for Liquid Rocket Engines, in Proceedings of the 70th International Astronautical Congress (IAC), Washington D.C., 21-25 October 2019

  2. P.R. Gradl, C. Protz, S.E. Greene, D. Ellis, B. Lerch, I. Locci, Development and Hot-fire Testing of Additively Manufactured Copper Combustion Chambers for Liquid Rocket Engine Applications, in Proceedings of the 53rd AIAA/SAE/ASEE Joint Propulsion Conference, Atlanta, 10-12 July 2017

  3. J.K. Lee, J.H. Lee, S.P. Lee, I.S. Son, D.S. Bae, Met. Mater. Int. 20, 483 (2014)

    Google Scholar 

  4. C. Zeng, H. Wen, B.C. Bernard, J.R. Raush, P.R. Gradl, M. Khonsari, S.M. Guo, Manuf. Lett. 28, 25 (2021)

    Google Scholar 

  5. N. Liang, J. Liu, S. Lin, Y. Wang, J.T. Wang, Y. Zhao, Y. Zhu, J. Alloy. Compd. 735, 1389 (2018)

    Google Scholar 

  6. Y.-X. Tong, Y. Wang, Z.-M. Qian, D.-T. Zhang, L. Li, Y.-F. Zheng, Acta Metall. Sin. Engl. 31, 1084 (2018)

    Google Scholar 

  7. J. Chen, J. Wang, X. Xiao, H. Wang, H. Chen, B. Yang, Mater. Sci. Eng. A 756, 464 (2019)

    Google Scholar 

  8. Y. Wang, O. Mohamed, K. Dunn, T. Sui, M. Bashir, P. Cooper, A. Lukenskas, G. Wu, M. Gorley, J. Nucl. Mater. 543, 152546 (2021)

    Google Scholar 

  9. M. Kulczyk, W. Pachla, J. Godek, J. Smalc-Koziorowska, J. Skiba, S. Przybysz, M. Wróblewska, M. Przybysz, Mater. Sci. Eng. A 724, 45 (2018)

    Google Scholar 

  10. S. Huang, W. Huang, W. Xie, H. Chen, H. Wang, B. Yang, J. Mater. Sci. Mater. Electron. 31, 17798  (2020)

    Google Scholar 

  11. Z. Zhang, L. Sun, N. Tao, J. Mater. Sci. Technol. 48, 18 (2020)

    Google Scholar 

  12. R. Li, E. Guo, Z. Chen, H. Kang, W. Wang, C. Zou, T. Li, T. Wang, J. Alloy. Compd. 771, 1044 (2019)

    Google Scholar 

  13. Z. Zhang, L. Sun, N. Tao, J. Alloy. Compd. 867, 159016  (2021)

    Google Scholar 

  14. A. Brotzu, F. Felli, D. Pilone, V. Di Cocco, G. Sindoni, I. Ciufolini, Procedia Struct. Integr. 18, 742 (2019)

    Google Scholar 

  15. A. Brotzu, F. Felli, D. Pilone, A. Paolozzi, C. Paris, F. Iacoviello, C. Bellini, V.D. Cocco, Mater. Des. Process. Commun. 2, e113 (2020)

    Google Scholar 

  16. H. Feng, H. Jiang, D. Yan, L. Rong, Trends J. Sci. Res. 4, 1 (2019)

    Google Scholar 

  17. S. Zhang, R. Li, H. Kang, Z. Chen, W. Wang, C. Zou, T. Li, T. Wang, Mater. Sci. Eng. A 680, 108 (2017)

    Google Scholar 

  18. C. Bellini, A. Brotzu, V. Di Cocco, F. Felli, F. Iacoviello, D. Pilone, Procedia Struct. Integr. 26, 330 (2020)

    Google Scholar 

  19. M. Hatakeyama, T. Toyama, J. Yang, Y. Nagai, M. Hasegawa, T. Ohkubo, M. Eldrup, B.N. Singh, J. Nucl. Mater. 386, 852 (2009)

    Google Scholar 

  20. C. Wallis, B. Buchmayr, Mater. Sci. Eng. A 744, 215 (2019)

    Google Scholar 

  21. P. Guan, X. Chen, P. Liu, F. Sun, C. Zhu, H. Zhou, S. Fu, Z. Wu, Y. Zhu, Mater. Res. Express 6, 1165c1 (2019)

    Google Scholar 

  22. V. Barabash, G. Kalinin, S.A. Fabritsiev, S.J. Zinkle, J. Nucl. Mater. 417, 904 (2011)

    Google Scholar 

  23. N. Bochvar, Cr-Cu-Zr (Chromium-Copper-Zirconium), in Non-Ferrous Metal Systems. Part 2, Vol. 11C2, ed. by G. Effenberg, S. Ilyenko (Springer, Berlin, 2007)

  24. D. Manca, A.Y. Churyumov, A. Pozdniakov, A. Prosviryakov, D. Ryabov, A.Y. Krokhin, V. Korolev, D. Daubarayte, Met. Mater. Int. 25, 633 (2019)

    Google Scholar 

  25. M. Vlach, J. Čížek, V. Kodetová, T. Kekule, F. Lukáč, M. Cieslar, H. Kudrnová, L. Bajtošová, M. Leibner, P. Harcuba, J. Málek, V. Neubert, Met. Mater. Int. 27, 995 (2021)

  26. Q. Liu, X. Zhang, Y. Ge, J. Wang, J.-Z. Cui, Metall. Mater. Trans. A 37, 3233 (2006)

    Google Scholar 

  27. I. Sağlam, D. Özyürek, K. Çetinkaya, Bull. Mater. Sci. 34, 1465 (2011)

    Google Scholar 

  28. J. Tu, W. Qi, Y. Yang, F. Liu, J. Zhang, G. Gan, N. Wang, X. Zhang, M. Liu, Wear 249, 1021 (2001)

    Google Scholar 

  29. G. Lin, Z. Wang, M. Zhang, H. Zhang, M. Zhao, Mater. Sci. Tech. 27, 966 (2011)

    Google Scholar 

  30. Z. Ma, K. Zhang, Z. Ren, D.Z. Zhang, G. Tao, H. Xu, J. Alloy. Compd. 828, 154350  (2020)

    Google Scholar 

  31. W. Lu, W. Zhai, J. Wang, X. Liu, L. Zhou, A.M.M. Ibrahim, X. Li, D. Lin, Y.M. Wang, Addit. Manuf. 38, 101751 (2021)

    Google Scholar 

  32. A. Popovich, V. Sufiiarov, I. Polozov, E. Borisov, D. Masaylo, A. Orlov, Mater. Lett. 179, 38 (2016)

    Google Scholar 

  33. R. Shi, S.A. Khairallah, T.T. Roehling, T.W. Heo, J.T. McKeown, M.J. Matthews, Acta Mater. 184, 284 (2020)

    Google Scholar 

  34. J. Hernandez-Sandoval, G. Garza-Elizondo, A. Samuel, S. Valtiierra, F. Samuel, Mater. Design 58, 89 (2014)

    Google Scholar 

  35. A.M.A. Mohamed, F.H. Samuel, S.A. Kahtani, Mater. Sci. Eng. A 577, 64 (2013)

    Google Scholar 

  36. V. Laporte, A. Mortensen, Int. Mater. Rev. 54, 94 (2009)

    Google Scholar 

  37. B.E. Carroll, T.A. Palmer, A.M. Beese, Acta Mater. 87, 309 (2015)

    Google Scholar 

  38. Q. Zhang, J. Chen, Z. Zhao, H. Tan, X. Lin, W. Huang, Mater. Sci. Eng. A 673, 204 (2016)

    Google Scholar 

  39. Y.-D. Im, K.-H. Kim, K.-H. Jung, Y.-K. Lee, K.-H. Song, Metall. Mater. Trans. A 50, 2014 (2019)

    Google Scholar 

  40. A. Kreitcberg, V. Brailovski, S. Turenne, Mater. Sci. Eng. A 700, 540 (2017)

    Google Scholar 

  41. M. Tang, P.C. Pistorius, JOM 69, 516 (2017)

    Google Scholar 

  42. S. Lee, J. Kim, J. Choe, S.-W. Kim, J.-K. Hong, Y.S. Choi, Met. Mater. Int. 27, 78 (2021)

  43. A.P. Jirandehi, T. Chakherlou, J. Strain Anal. Eng. 54, 79 (2019)

    Google Scholar 

  44. S.-H. Sun, Y. Koizumi, T. Saito, K. Yamanaka, Y.-P. Li, Y. Cui, A. Chiba, Addit. Manuf. 23, 457 (2018)

    Google Scholar 

  45. D. Roberts, Y. Zhang, I. Charit, J. Zhang, Prog. Addit. Manuf. 3, 183 (2018)

    Google Scholar 

  46. J. Su, Q. Dong, P. Liu, H. Li, B. Kang. Mater. Sci. Eng. A 392, 422 (2005)

    Google Scholar 

  47. T. Hamaoka, M. Takeguchi, Philos. Mag. 98, 2845 (2018)

    Google Scholar 

  48. E. Sjölander, S. Seifeddine, J. Mater. Process. Tech. 210, 1249 (2010)

    Google Scholar 

  49. A.P. Jirandehi, M. Khonsari, Int. J. Fatigue 142, 105966 (2021)

    Google Scholar 

  50. J. Schäfer, K. Albe, Scripta Mater. 66, 315 (2012)

    Google Scholar 

  51. Y. Pang, C. Xia, M. Wang, Z. Li, Z. Xiao, H. Wei, X. Sheng, Y. Jia, C. Chen, J. Alloy. Compd. 582, 786 (2014)

    Google Scholar 

  52. M. Hatakeyama, T. Toyama, Y. Nagai, M. Hasegawa, M. Eldrup, B.N. Singh, Mater. Trans. 49, 518 (2008)

    Google Scholar 

  53. U. Holzwarth, H. Stamm, M. Pisoni, A. Volcan, R. Scholz, Fusion Eng. Des. 51, 111 (2000)

    Google Scholar 

  54. S. Shaha, F. Czerwinski, W. Kasprzak, J. Friedman, D. Chen, Mater. Sci. Eng. A 652, 353 (2016)

    Google Scholar 

  55. G. Purcek, H. Yanar, O. Saray, I. Karaman, H.J. Maier, Wear 311, 149 (2014)

    Google Scholar 

  56. U. Holzwarth, H. Stamm, J. Nucl. Mater. 279, 31 (2000)

    Google Scholar 

  57. K. Wang, K.-F. Liu, J.-B. Zhang, Rare Metals 33, 134 (2014)

    Google Scholar 

  58. G. Purcek, H. Yanar, M. Demirtas, Y. Alemdag, D. Shangina, S. Dobatkin, Mater. Sci. Eng. A 649, 114 (2016)

    Google Scholar 

  59. U.S. Bertoli, G. Guss, S. Wu, M.J. Matthews, J.M. Schoenung, Mater. Design 135, 385 (2017)

    Google Scholar 

  60. A. Bardelcik, C.P. Salisbury, S. Winkler, M.A. Wells, M.J. Worswick, Int. J. Impact Eng. 37, 694 (2010)

    Google Scholar 

  61. T. Nishibata, N. Kojima, J. Alloy. Compd. 577, S549 (2013)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Aeronautics and Space Administration (NASA)’s Established Program to Stimulate Competitive Research (EPSCoR) Cooperative Agreement numbers 80NSSC19M0079, 80NSSC19M0149 and 80NSSC20M0149 (CFDA Number 43.008). The use of instruments housed within the LSU Shared Instrumentation Facilities (SIF), a part of LAMDA (Grant Number NSF #OIA-1946231) Core User Facilities, is acknowledged. The L-PBF samples are prepared by Moog (www.moog.com).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengmin Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, C., Wen, H., Bernard, B.C. et al. Tensile Properties of Additively Manufactured C-18150 Copper Alloys. Met. Mater. Int. 28, 168–180 (2022). https://doi.org/10.1007/s12540-021-01052-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-021-01052-0

Keywords

Navigation