Skip to main content
Log in

Investigation of Quench Sensitivity and Microstructure Evolution During Isothermal Treatment in 2195 Al–Li Alloy

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

To investigate the quenching sensitivity of the 2195 Al–Li alloy rolled sheet and guide the design of the quenching process, the time–temperature-property (TTP) curves of this material were researched through interrupted quenching experiments. The differential scanning calorimetry (DSC) and transmission electron microscope (TEM) were used to characterize the evolution of precipitates during isothermal treatment. The results of this essay demonstrated that the nose temperature of 2195 Al–Li alloy is around 370 °C and the temperature range of quenching sensitivity is 340 °C to 400 °C. The microstructure observation revealed that the T1 particles precipitate and grow rapidly at the temperature from 340 to 400 °C, which is due to the high nucleation rate of phase and fast solute diffusion kinetics, especially at the nose temperature. The needle-shaped θ′/θ″ and T1 particles grow up quickly as the isothermal preservation time prolonged, leading to the decrease of the supersaturated solid solution of the matrix. This will reduce the number of the age-induced precipitate and weaken the subsequent age hardening effect. Therefore, the rate of cooling should be increased in the quenching sensitivity range (340–400 °C) to inhibit the precipitation of the second phase and obtain excellent mechanical properties. While in other temperature ranges, the cooling rate should be decreased appropriately to reduce residual stress. The appropriate average cooling rate is recommended to be around 13 °C s−1 at the temperature from 340 to 400 °C.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S.Y. Betsofen, V.V. Antipov, M.I. Knyazev, Russ. Metall. 2016, 326 (2016)

    Article  Google Scholar 

  2. S. Nouri, S. Sahmani, M. Hadavi, S. Mirdamadi, Met. Mater. Int. 26, 1134 (2020)

    Article  CAS  Google Scholar 

  3. M. Ubaid, D. Bajaj, A.K. Mukhopadhyay, A.N. Siddiquee, Met. Mater. Int. 26, 1841 (2020)

    Article  CAS  Google Scholar 

  4. S.V.S.N. Murty, A. Sarkar, P.R. Narayanan, P.V. Venkitakrishnan, J. Mukhopadhyay, Mater. Sci. Eng. A 677, 41 (2016)

    Article  CAS  Google Scholar 

  5. R.J. Rioja, Mater. Sci. Eng. A 257, 100 (1998)

    Article  Google Scholar 

  6. T. Dursun, C. Soutis, Mater. Design 56, 862 (2014)

    Article  CAS  Google Scholar 

  7. G. Kakauridze, B. Kilosanidze, in Proceedings of SPIE, ed. by H.I. Bjelkhagen. SPIE OPTO 2011, San Francisco, 23, 24, 26 January 2011. Vol. 7957, Practical Holography XXV: Materials and Applications (SPIE, Washington, 2011), p. 79570T

  8. H. Wang, Y. Yi, S. Huang, J. Alloy. Compd. 690, 446 (2017)

    Article  CAS  Google Scholar 

  9. A. Deschamps, Y. Bréchet, Scripta Mater. 39, 1517 (1998)

    Article  CAS  Google Scholar 

  10. B. Milkereit, M.J. Starink, Mater. Design 76, 117 (2015)

    Article  CAS  Google Scholar 

  11. J.S. Robinson, R.L. Cudd, D.A. Tanner, G.P. Dolan, J. Mater. Process. Tech. 119, 261 (2001)

    Article  CAS  Google Scholar 

  12. B. Yang, B. Milkereit, Y. Zhang, P.A. Rometsch, O. Kessler, C. Schick, Mater. Charact. 120, 30 (2016)

    Article  CAS  Google Scholar 

  13. B. Milkereit, N. Wanderka, C. Schick, O. Kessler, Mater. Sci. Eng. A 550, 87 (2012)

    Article  CAS  Google Scholar 

  14. Y. Zhang, B. Milkereit, O. Kessler, C. Schick, P.A. Rometsch, J. Alloy. Compd. 584, 581 (2014)

    Article  CAS  Google Scholar 

  15. D.A. Tanner, J.S. Robinson, Mater. Design 29, 1489 (2008)

    Article  CAS  Google Scholar 

  16. E.Y. Kaputkin, Mater. Sci. Eng. A 280, 76 (2000)

    Article  Google Scholar 

  17. P. Archambault, D. Godard, Scripta Mater. 42, 675 (2000)

    Article  CAS  Google Scholar 

  18. X. Dai, C. Xiong, N. Li, Y. Luo, Rare Metal Mat. Eng. 48, 721 (2019)

    Google Scholar 

  19. J.W. Evancho, J.T. Staley, Metall. Mater. Trans. B 5, 43 (1974)

    Article  CAS  Google Scholar 

  20. J.T. Staley, Mater. Sci. Tech.-Lond. 3, 923 (1987)

    Article  CAS  Google Scholar 

  21. M. Tiryakioĝlu, R.T. Shuey, Mater. Sci. Eng. A 527, 5033 (2010)

    Article  CAS  Google Scholar 

  22. H. Li, M. Han, C. Zeng,, Mater. Sci. Technol. 22, 6 (2014)

    Google Scholar 

  23. M.J. Starink, B. Milkereit, Y. Zhang, P.A. Rometsch, Mater. Design 88, 958 (2015)

    Article  CAS  Google Scholar 

  24. B. Nie, P. Liu, T. Zhou, Mater. Sci. Eng. A 667, 106 (2016)

    Article  CAS  Google Scholar 

  25. C. Zhang, M. Liu, Z. Meng, Q. Zhang, G. Zhao, L. Chen, H. Zhang, J. Wang, J. Mater. Process. Tech. 283, 116718 (2020)

    Article  CAS  Google Scholar 

  26. R.J. Rioja, J. Liu, Metall. Mater. Trans. A 43, 3325 (2012)

    Article  CAS  Google Scholar 

  27. Y. Li, Z. Shi, J. Lin, Y.L. Yang, Q. Rong, B.M. Huang, T.F. Chung, C.S. Tsao, J.R. Yang, D.S. Balint, Int. J. Plasticity 89, 130 (2017)

    Article  CAS  Google Scholar 

  28. P. Ma, L. Zhan, C. Liu, Q. Wang, H. Li, D. Liu, Z. Hu, J. Alloy. Compd. 790, 8 (2019)

    Article  CAS  Google Scholar 

  29. H.H. Jo, K.-I. Hirano, Mater. Sci. Forum 13–14, 377 (1987)

    Article  Google Scholar 

  30. B. Cai, Z.Q. Zheng, D.Q. He, S.C. Li, H.P. Li, J. Alloy. Compd. 649, 19 (2015)

    Article  CAS  Google Scholar 

  31. B. Decreus, A. Deschamps, F. De Geuser, P. Donnadieu, C. Sigli, M. Weyland, Acta Mater. 61, 2207 (2013)

    Article  CAS  Google Scholar 

  32. A. Deschamps, M. Garcia, J. Chevy, B. Davo, F. De Geuser, Acta Mater. 122, 32 (2017)

    Article  CAS  Google Scholar 

  33. H. Sidhar, N.Y. Martinez, R.S. Mishra, J. Silvanus, Mater. Design 106, 146 (2016)

    Article  CAS  Google Scholar 

  34. Q. Chu, W.Y. Li, X.W. Yang, J.J. Shen, A. Vairis, W.Y. Feng, W.B. Wang, J. Mater. Sci. Technol. 34, 1739 (2018)

    Article  CAS  Google Scholar 

  35. H. Sidhar, R.S. Mishra, Mater. Design 110, 60 (2016)

    Article  CAS  Google Scholar 

  36. T. Dorin, A. Deschamps, F. De Geuser, W. Lefebvre, C. Sigli, Philos. Mag. 94, 1012 (2014)

    Article  CAS  Google Scholar 

  37. M.H. Tosten, A.K. VasudÉvan, P.R. Howell, Metall. Trans. A 19, 51 (1988)

    Article  Google Scholar 

  38. P. Donnadieu, Y. Shao, F. De Geuser, G.A. Botton, S. Lazar, M. Cheynet, M. De Boissieu, A. Deschamps, Acta Mater. 59, 462 (2011)

    Article  CAS  Google Scholar 

  39. O. Sitdikov, E. Avtokratova, M. Markushev, Met. Mater. Int. (2020). https://doi.org/10.1007/s12540-020-00842-2

  40. W.B. Chen, D.H. Xiao, M.D. Wu, J. Huang, L.P. Huang, W.S. Liu, J. Mater. Res. Technol. 9, 9675 (2020)

    Article  CAS  Google Scholar 

  41. L. Wu, X. Li, H. Wang, Mater. Charact. 171, 110800 (2021)

    Article  CAS  Google Scholar 

  42. E. Balducci, L. Ceschini, S. Messieri, S. Wenner, R. Holmestad, Mater. Design 119, 54 (2017)

    Article  CAS  Google Scholar 

  43. T. Dorin, A. Deschamps, F. De Geuser, M. Weyland, in ICAA13 Pittsburgh, ed. by H. Weiland, A.D. Rollett, W.A. Cassada, 13th International Conference on Aluminum Alloys, Pittsburgh, 3-7 ​June 2012 (Springer, Cham, 2012), p. 1155

  44. R.N. Lumley (ed.), Fundamentals of Aluminium Metallurgy (Woodhead Publishing, Cambridge, 2018)

  45. H. Li, L. Zhan, M. Huang, X. Zhao, C. Zhou, and Z. Qiang, J. Alloy. Compd. 851, 156829 (2021)

  46. D. Shin, A. Shyam, S. Lee, Y. Yamamoto, J.A. Haynes, Acta Mater. 141, 327 (2017)

    Article  CAS  Google Scholar 

  47. J. Silcock, T. Heal, H. Hardy, J. I. Met. 82, 239 (1954)

    CAS  Google Scholar 

  48. A.K. Gupta, P. Gaunt, M.C. Chaturvedi, Philos. Mag. A 55, 375 (1987)

  49. E. Balducci, L. Ceschini, S. Messieri, S. Wenner, R. Holmestad, Mater. Sci. Eng. A 707, 221 (2017)

    Article  CAS  Google Scholar 

  50. Q. Liu, R.H. Zhu, J.F. Li, Y.L. Chen, X.H. Zhang, L. Zhang, Z.Q. Zheng, T. Nonferr. Metal. Soc. 26, 607 (2016)

  51. N. Jiang, X. Gao, Z.Q. Zheng, T. Nonferr. Metal. Soc. 20, 740 (2010)

  52. B.C. Shang, Z.M. Yin, G. Wang, B. Liu, Z.Q. Huang, Mater. Design 32, 3818 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was accomplished through the cooperation with Southwest Aluminum Group Company and supported by the National Natural Science Foundation of China [Grant number 51875583]. We would like to thank Fei Dong, Jingjing Zhang, Wanfu Guo, and Shan Guo for English language editing and Ke Huang, Jiaguo Tang, Chenguang Wang, and Jingting Yang for their help and fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Youping Yi or Shiquan Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Yi, Y., You, W. et al. Investigation of Quench Sensitivity and Microstructure Evolution During Isothermal Treatment in 2195 Al–Li Alloy. Met. Mater. Int. 28, 1423–1432 (2022). https://doi.org/10.1007/s12540-021-01000-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-021-01000-y

Keywords

Navigation