Skip to main content
Log in

Study on Quench Sensitivity and Premature Precipitation Behavior of the Cryogenic Deformed 6061 Aluminum Alloy

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The temperature–time-property (TTP) curve of the cryogenic deformed 6061 aluminum alloy was fitted in this study, and the sensitive temperature range was determined through interrupted quenching experiments. The precipitation behavior during isothermal treatment of the cryogenic deformed samples was observed and analyzed by the differential scanning calorimetry (DSC), optical microscope (OM), and transmission electron microscope (TEM), and the premature precipitation mechanism during isothermal treatment was discussed in detail. The results revealed that the critical time for a 5% drop in hardness at the nose temperature (400 °C) was 25.2 s. Furthermore, the sensitive temperature range was determined to be from 360 to 420 °C. At 400 ℃, the supersaturated solution transformation rate reached its maximum, and coarse β equilibrium phases were rapidly precipitated in the grain. However, when the temperature was outside the sensitive range, the transformation rate decreased, and several β" and β′ phases were observed, indicates a lower degree of premature precipitation of the alloy. The high sensitivity at nose temperature can be attributed to the relatively high nucleation and growth rates of phases. Based on the experimental results, the cooling rate at the sensitive temperature range should be increased, while the cooling rate from the solution temperature to 420 °C should be properly decreased during the quenching process to obtain relatively high mechanical properties and low residual stresses.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. B.F. Jogi, P.K. Brahmankar, V.S. Nanda, R.C. Prasad, J. Mater. Process. Tech. 201, 380–384 (2008). https://doi.org/10.1016/j.jmatprotec.2007.11.302

    Article  CAS  Google Scholar 

  2. J. Wang, X. Chen, L. Yang, G. Zhang, Mat. Sci. Eng A-Struct. 841, 143081 (2022). https://doi.org/10.1016/j.msea.2022.143081

    Article  CAS  Google Scholar 

  3. R. Braun, Mater. Sci. Forum 519–521, 735–740 (2006). https://doi.org/10.4028/www.scientific.net/MSF.519-521.735

    Article  Google Scholar 

  4. Z. Yin, Z. Yi, Appl. Optics 54, 7835–7841 (2015). https://doi.org/10.1364/AO.54.007835

    Article  CAS  Google Scholar 

  5. A.S. Ahmad, W. Yunxin, G. Hai, L. Lei, Stroj. Vestn-J. Mech. E. 65, 311–318 (2019). https://doi.org/10.5545/sv-jme.2018.5938

    Article  Google Scholar 

  6. H. Lim, D. Ko, D. Ko, B. Kim, Metall. Mater. Trans. B 45, 472–481 (2014). https://doi.org/10.1007/s11663-013-9997-3

    Article  CAS  Google Scholar 

  7. H. Wang, Y. Yi, S. Huang, J. Alloy. Compd. 690, 446–452 (2017). https://doi.org/10.1016/j.jallcom.2016.08.160

    Article  CAS  Google Scholar 

  8. V.G. Davydov, L.B. Ber, E.Y. Kaputkin, V.I. Komov, O.G. Ukolova, E.A. Lukina, Mat. Sci. Eng A-Struct. 280, 76–82 (2000). https://doi.org/10.1016/S0921-5093(99)00659-0

    Article  Google Scholar 

  9. P. Archambault, D. Godard, Scripta Mater. 42, 675–680 (2000). https://doi.org/10.1016/S1359-6462(99)00419-4

    Article  CAS  Google Scholar 

  10. Z. Ma, Y. Zhang, S. Liu, Y. Deng, X. Zhang, T. Nonferr. Met. Soc. 31, 3356–3369 (2021). https://doi.org/10.1016/S1003-6326(21)65734-5

    Article  CAS  Google Scholar 

  11. H. Li, C. Zeng, M. Han, J. Liu, X. Lu, T. Nonferr. Met. Soc. 23, 38–45 (2013). https://doi.org/10.1016/S1003-6326(13)62426-7

    Article  CAS  Google Scholar 

  12. B. Milkereit, M.J. Starink, Mater. Design 76, 117–129 (2015). https://doi.org/10.1016/j.matdes.2015.03.055

    Article  CAS  Google Scholar 

  13. M.E. Kassner, P. Geantil, X. Li, J. Metall. 2011, 747198 (2011). https://doi.org/10.1155/2011/747198

    Article  CAS  Google Scholar 

  14. F. Dong, Y. Yi, C. Huang, S. Huang, J. Alloy. Compd. 827, 154300 (2020). https://doi.org/10.1016/j.jallcom.2020.154300

    Article  CAS  Google Scholar 

  15. F. Dong, Y. Yi, S. Huang, H. He, J. Huang, C. Wang, K. Huang, Mater. Charact. 173, 110927 (2021). https://doi.org/10.1016/j.matchar.2021.110927

    Article  CAS  Google Scholar 

  16. D. Wang, S. Huang, Y. Yi, H. He, C. Li, Mater. Charact. 187, 111831 (2022). https://doi.org/10.1016/j.matchar.2022.111831

    Article  CAS  Google Scholar 

  17. J. Huang, Y. Yi, S. Huang, F. Dong, W. Guo, D. Tong, H. He, Met. Mater. Int. 27, 815–824 (2021). https://doi.org/10.1007/s12540-019-00468-z

    Article  CAS  Google Scholar 

  18. Z. Zhang, Y. Yi, W. You, S. Huang, Y. Guo, H. He, Met. Mater. Int. 28, 1423–1432 (2022). https://doi.org/10.1007/s12540-021-01000-y

    Article  CAS  Google Scholar 

  19. J.V. Evancho, J.T. Staley, Metall. Mater. Trans. B 5, 43–47 (1974). https://doi.org/10.1007/BF02642924

    Article  CAS  Google Scholar 

  20. D. Lu, H. Ning, Y. Du, J. Li, D. Liu, Y. Guo, Y. Chen, X. Zhang, W. You, K. Zhang, R. Zhang, J. Alloy. Compd. 888, 161450 (2021). https://doi.org/10.1016/j.jallcom.2021.161450

    Article  CAS  Google Scholar 

  21. T. He, W. Shi, S. Xiang, C. Huang, R.G. Ballinger, Materials 14, 1821 (2021). https://doi.org/10.3390/ma14081821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Y.X. Lai, W. Fan, M.J. Yin, C.L. Wu, J.H. Chen, J. Mater. Sci. Technol. 41, 127–138 (2020). https://doi.org/10.1016/j.jmst.2019.11.001

    Article  CAS  Google Scholar 

  23. A. Deschamps, M. Garcia, J. Chevy, B. Davo, F. De Geuser, Acta Mater. 122, 32–46 (2017). https://doi.org/10.1016/j.actamat.2016.09.036

    Article  CAS  Google Scholar 

  24. L. Zhen, S.B. Kang, Mater. Lett. 37, 349–353 (1998). https://doi.org/10.1016/S0167-577X(98)00118-9

    Article  CAS  Google Scholar 

  25. M. Liu, Z. Wu, R. Yang, J. Wei, Y. Yu, P.C. Skaret, H.J. Roven, Pro. Nat. Sci. 25, 153–158 (2015). https://doi.org/10.1016/j.pnsc.2015.02.004

    Article  CAS  Google Scholar 

  26. P. Nageswara Rao, D. Singh, R. Jayaganthan, J. Mater. Sci. Technol. 30, 998–1005 (2014). https://doi.org/10.1016/j.jmst.2014.03.009

    Article  CAS  Google Scholar 

  27. W.F. Miao, D.E. Laughlin, Scripta Mater. 40, 873–878 (1999). https://doi.org/10.1016/S1359-6462(99)00046-9

    Article  CAS  Google Scholar 

  28. R. Vissers, M.A. van Huis, J. Jansen, H.W. Zandbergen, C.D. Marioara, S.J. Andersen, Acta Mater. 55, 3815–3823 (2007). https://doi.org/10.1016/j.actamat.2007.02.032

    Article  CAS  Google Scholar 

  29. M. Gao, M. Wang, L. Wen, G. Li, Metallogr. Microstruc. 1, 165–169 (2012). https://doi.org/10.1007/s13632-012-0031-y

    Article  CAS  Google Scholar 

  30. M. Avrami, J. Chem. Phys. 7, 1103–1112 (1939). https://doi.org/10.1063/1.1750380

    Article  CAS  Google Scholar 

  31. M. Avrami, J. Chem. Phys. 8, 212–224 (1940). https://doi.org/10.1063/1.1750631

    Article  CAS  Google Scholar 

  32. M. Avrami, J. Chem. Phys. 9, 177–184 (1941). https://doi.org/10.1063/1.1750872

    Article  CAS  Google Scholar 

  33. E.J. Mittemeijera, F. Sommer, Int. J. Mater. Res. 7, 784–795 (2011). https://doi.org/10.3139/146.110537

    Article  CAS  Google Scholar 

  34. B.C. Shang, Z.M. Yin, G. Wang, B. Liu, Z.Q. Huang, Mater. Design 32, 3818–3822 (2011). https://doi.org/10.1016/j.matdes.2011.03.016

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Major Projects of Scientific and Technology Innovation of Hunan Province (Grant No. 2021GK1040).

Author information

Authors and Affiliations

Authors

Contributions

KH: Investigation, Methodology, Writing—original draft. YY: Resource, Conceptualization, Funding acquisition, Supervision. SH: Investigation, Supervision, Data curation. HH: Data Acquisition, Software. FD: Formal analysis, Data curation. YF: Visualization, Investigation. YJ: Investigation, Software. WY: Data acquisition, Data curation.

Corresponding author

Correspondence to Shiquan Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, K., Yi, Y., Huang, S. et al. Study on Quench Sensitivity and Premature Precipitation Behavior of the Cryogenic Deformed 6061 Aluminum Alloy. Met. Mater. Int. 30, 1331–1341 (2024). https://doi.org/10.1007/s12540-023-01565-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-023-01565-w

Keywords

Navigation