Skip to main content

Advertisement

Log in

Multi-Objective Optimization of Process Parameters in Resistance Spot Welding of A36 Mild Steel and Hot Dipped Galvanized Steel Sheets Using Non-dominated Sorting Genetic Algorithm

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Industry is constantly moving towards an increasing of production speed while minimizing production costs. This paper presents an efficient method for minimizing production times and energies through optimization of process parameters in resistance spot welding (RSW). Two grades of steel were used in this study, ASTM A36 steel and A653 hot dipped galvanized steel. Welding was done in overlap configuration, grade for grade, while following complete factorial plans. Micrographic analysis revealed welds microstructure while micro-indentation hardness tests enabled to establish hardness profiles along weld nuggets. Tensile-shear tests have been carried out in order to quantify the mechanical strength of welds. Analysis of variance showed that welding current is the most significant parameter and contributes for about 70% to welds mechanical strength. The ratio of hardness in the fusion zone to nugget surface area was found to be correlated with the failure mode of welded specimens. On that basis, a multi-objective optimization of the process parameters, through the non-dominated sorting genetic algorithm was performed. This optimization resulted in a reduction of current, electrode pressing force and welding time of 10.58%, 13.59% and 32.61% respectively. Optimized parameters were then assessed trough tensile-shear testing of welded specimens, all specimens passed the validation tests by experiencing failure in the base metal.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. M. Pouranvari, H.R. Asgari, S.M. Mosavizadch, P.H. Marashi, M. Goodarzi, Sci. Technol. Weld. Joining 12(3), 217 (2007)

    Article  Google Scholar 

  2. U. Ozsarac, J. Mater. Eng. Perform. 21, 748 (2012)

    Article  CAS  Google Scholar 

  3. I. Hwang, D. Kim, M. Kang, J.-H. Kwak, Y.-M. Kim, Met. Mater. Int. 23, 341 (2017)

    Article  CAS  Google Scholar 

  4. G.-C. Kim, I. Hwang, M. Kang, D. Kim, H. Park, Y.-M. Kim, Met. Mater. Int. 25, 207 (2019)

    Article  CAS  Google Scholar 

  5. G. Park, S. Jeong, C. Lee, Fusion Weldabilities of Advanced High Manganese Steels: A Review. Met. Mater. Int. (2020). https://doi.org/10.1007/s12540-020-00706-9

    Article  Google Scholar 

  6. H.T. Sun, X.M. Lai, Y.S. Zhang, J. Shen, Sci. Technol. Weld. Joining 12, 718 (2007)

    Article  Google Scholar 

  7. D.-Y. Choi, A. Sharma, S.-H. Uhm, J.P. Jung, Met. Mater. Int. 25, 219 (2019)

    Article  CAS  Google Scholar 

  8. Y. Bozkurt, A. Türker, G. Soytemiz, S. Salman, Eur. J. Eng. Nat. Sci. 3(1), 52–58 (2019)

    Google Scholar 

  9. E. López-Martínez, O. Vázquez-Gómez, H.J. Vergara-Hernández, S. Serna, B. Campillo, Met. Mater. Int. 22, 987 (2016)

    Article  CAS  Google Scholar 

  10. B.V. Feujofack Kemda, N. Barka, M. Jahazi, D. Osmani, Met. Mater. Int. 27, 1205 (2021)

    Article  CAS  Google Scholar 

  11. M. Vural, A. Akkuş, B. Eryürek, J. Mater. Process. Tech. 176, 127 (2006)

    Article  CAS  Google Scholar 

  12. E. Kim, T.W. Eagar, Met. Mater. Int. 21, 356 (2015)

    Article  CAS  Google Scholar 

  13. W. Li, E. Feng, D. Cerjanec, G. A. Grzadzinski, Energy consumption in AC and MFDC resistance spot welding, in Proceedings of Sheet Metal Welding Conference XI, Sterling Heights, Michigan, 11–14 May, 2004

  14. Y. Li, Z. Luo, F. Yan, R. Duan, Q. Yao, Mater. Des. 56, 1025 (2014)

    Article  CAS  Google Scholar 

  15. B.M. Brown, Weld. J. 66, 18 (1987)

    CAS  Google Scholar 

  16. N.K. Singh, Y. Vijayakumar, Innov. Syst. Des. Eng. 3, 49 (2012)

    Google Scholar 

  17. H. Pashazadeh, Y. Gheisari, M. Hamedi, J. Intell. Manuf. 27, 549 (2016)

    Article  Google Scholar 

  18. R.K. Suresh, VSRD Int. J. Mech. Civ. Auto. Prod. Eng. 4, 95 (2014)

    Google Scholar 

  19. A.K. Pandey, M.I. Khan, K.M. Moeed, Int. J. Eng. Sci. Technol. 5, 234 (2013)

    Google Scholar 

  20. N. Muhammad, Y.H.P. Manurung, M. Hafidzi, S.K. Abas, G. Tham, E. Haruman, J. Mech. Sci. Technol. 26, 2365 (2012)

    Article  Google Scholar 

  21. J.H. Holland, Adaptation in Natural and Artificial Systems (University of Michigan Press, Ann Arbor, 1975)

    Google Scholar 

  22. M. Srinivas, L.M. Patnaik, Computer 27, 17 (1994)

    Article  Google Scholar 

  23. H.-Y. Tseng, Int. J. Adv. Manuf. Tech. 27, 897 (2006)

    Article  Google Scholar 

  24. B. Li, B.W. Shiu, Int. J. Adv. Manuf. Tech. 18, 276 (2001)

    Article  Google Scholar 

  25. Y. Yusoff, M.S. Ngadiman, A.M. Zain, Procedia Eng. 15, 3978 (2011)

    Article  Google Scholar 

  26. M. Vasudevan, V. Arunkumar, N. Chandrasekhar, V. Maduraimuthu, Sci. Technol. Weld. Joining 15, 117 (2010)

    Article  CAS  Google Scholar 

  27. A. Kumar, T. DebRoy, Sci. Technol. Weld. Joining 11, 106 (2006)

    Article  Google Scholar 

  28. K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, IEEE Trans. Evol. Comput. 6, 182 (2002)

    Article  Google Scholar 

  29. American Institute of Steel Construction, Steel Construction Manual, 15th edn. (American Institute of Steel Construction, Chicago, 2017)

    Google Scholar 

  30. H.S. Bahari, H. Savaloni, Met. Mater. Int. 26, 1621 (2020)

    Article  CAS  Google Scholar 

  31. H.-Y. Lee, Met. Mater. Int. 26, 1749 (2020)

    Article  CAS  Google Scholar 

  32. T. Safiuddeen, P. Balaji, S. Dinesh, B. Md. ShabeerHussain, M.R. Giridharan, Mater. Today 39, 183 (2021)

    Google Scholar 

  33. S. Sattarpanah Karganroudi, B.V. Feujofack Kemda, N. Barka, Manuf. Lett. 25, 98 (2020)

    Article  Google Scholar 

  34. R. Davalos Monteiro, J. van de Wetering, B. Krawczyk, D.L. Engelberg, Met. Mater. Int. 26, 630 (2020)

    Article  CAS  Google Scholar 

  35. D.C. Ramachandran, S.P. Murugan, Y.-M. Kim, D. Kim, G.-G. Kim, D.-G. Nam, C. Jeong, Y.D. Park, Met. Mater. Int. 26, 1341 (2020)

    Article  CAS  Google Scholar 

  36. V. Poonguzhali, M. Umar, P. Sathiya, Met. Mater. Int. 26, 115 (2020)

    Article  CAS  Google Scholar 

  37. L. Mei, J. Yi, D. Yan, J. Liu, G. Chen, Mater. Design 40, 433 (2012)

    Article  CAS  Google Scholar 

  38. ASTM E384–17, Standard Test Method for Microindentation Hardness of Materials (ASTM International, West Conshohocken, PA, 2017)

  39. ASTM E8/E8M-16a, Standard Test Methods for Tension Testing of Metallic Materials (ASTM International, West Conshohocken, PA, 2016)

  40. B.V. Feujofack Kemda, N. Barka, M. Jahazi, D. Osmani, Int J. Adv. Manuf. Tech. 106, 2477 (2020)

    Article  Google Scholar 

  41. D.F. Watt, L. Coon, M. Bibby, J. Goldak, C. Henwood, Acta Metall. 36, 3029 (1988)

    Article  CAS  Google Scholar 

  42. C. Li, X. Yuan, K. Wu, H. Wang, Z. Hu, X. Pan, Met. Mater. Int. 23, 543 (2017)

    Article  CAS  Google Scholar 

  43. N. Saeidi, M. Jafari, J.G. Kim, F. Ashrafizadeh, H.S. Kim, Met. Mater. Int. 26, 168 (2020)

    Article  CAS  Google Scholar 

  44. Y. Zhao, X. Zhan, Q. Gao, S. Chen, Y. Kang, Met. Mater. Int. 26, 346 (2020)

    Article  CAS  Google Scholar 

  45. Z. Hao, T. Tian, S. Peng, C. Ge, X. Li, C. Jia, C. Guo, Q. Zhu, Met. Mater. Int. 26, 1270 ( 2020)

    Article  CAS  Google Scholar 

  46. M. Jafari, M. Rafiei, H. Mostaan, Met. Mater. Int. 26, 1533 (2020)

    Article  CAS  Google Scholar 

  47. G.M. Karthik, H.S. Kim, Met. Mater. Int. 27, 1 (2021)

    Article  CAS  Google Scholar 

  48. S.A. Gedeon, T.W. Eagar, Metall. Trans. B 17, 879 (1986)

    Article  Google Scholar 

  49. H.C. Lin, C.A. Hsu, C.S. Lee, T.Y. Kuo, S.L. Jeng, J. Mater. Process. Tech. 251, 205 (2018)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. V. Feujofack Kemda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feujofack Kemda, B.V., Barka, N., Jahazi, M. et al. Multi-Objective Optimization of Process Parameters in Resistance Spot Welding of A36 Mild Steel and Hot Dipped Galvanized Steel Sheets Using Non-dominated Sorting Genetic Algorithm. Met. Mater. Int. 28, 487–502 (2022). https://doi.org/10.1007/s12540-021-00986-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-021-00986-9

Keywords

Navigation