Skip to main content
Log in

Role of Grain Refinement Mechanism on Microstructure and Performance in AZ31B Alloy During Interactive Alternating Forward Extrusion (AFE) Process

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In this study, interactive alternate forward extrusion (AFE) experiments with varying number of extrusion passes of AZ31 magnesium alloy were carried out. The evolution of microstructure, and texture and their effects on the mechanical properties were studied. The results show that with the increase of loading passes, the grains are significantly refined, and the dynamic recrystallisation (DRX) structure is uniformly distributed in the product, which is the main reason for the increase in microhardness, compressive strength and failure strain. Further, slip and twinning induced DRX behaviour are considered to be the main deformation methods in the early stage of deformation. Whereas continuous DRX is considered to be the main deformation methods for the change in grain morphology in the later stage. During the extrusion process, the deflection angle of the base pole decreases. Finally, the fibre texture is formed; the texture strength is significantly reduced because of the effect of recrystallisation. The AZ31 magnesium alloy interactive AFE process is discussed with respect to the technological experiment and the microstructure deformation, thus providing a vital scientific basis for further application.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S.M. Fatemi, A. Zarei-Hanzaki, J.M. Cabrera, Metall. Mater. Trans. A 48, 2563 (2017)

    CAS  Google Scholar 

  2. Y. Wang, F. Li, X.W. Li, W.B. Fang, J. Mater. Process. Technol. 275, 116360 (2020)

    Article  CAS  Google Scholar 

  3. D. Sarker, D.L. Chen, Mater. Sci. Eng. A 596, 134 (2014)

    Article  CAS  Google Scholar 

  4. Y. Chino, M. Mabuchi, R. Kishihara, H. Hosokawa, Y. Yamada, C. Wen, K. Shimojima, H. Iwasaki, Mater. Trans. 43, 2554 (2002)

    Article  CAS  Google Scholar 

  5. Y. Wang, S. Zhang, R.Z. Wu, J. Mater. Sci. Technol. 61, 197 (2021)

    Article  Google Scholar 

  6. ​R. Ma, L. Wang, Y.N. Wang, D.Z. Zhou, Mater. Sci. Eng. A 638, 190 (2015)

    Article  CAS  Google Scholar 

  7. F. Pan, Q. Wang, B. Jiang, J. He, Y. Chai, J. Xu, Mater. Sci. Eng. A 655, 339 (2016)

    Article  CAS  Google Scholar 

  8. ​S.Q. Zhu, H.G. Yan, X.Z. Liao, S.J. Moody, G. Sha, Y.Z. Wu, S.P. Ringer, Acta Mater. 82, 344 (2015)

    Article  CAS  Google Scholar 

  9. X.P. Lin, T.B. Zhao, Y. Dong, J. Ye, Z.B. Fan, H.B. Xie, L. Wang, Mater. Sci. Eng. A 700, 681 (2017)

    Article  CAS  Google Scholar 

  10. P. Minárik, R. Král, J. Čížek, F. Chmelík, Acta Mater. 107, 83 (2016)

    Article  Google Scholar 

  11. S.M. Fatemi-Varzaneh, A. Zarei-Hanzaki, H. Beladi, Mater. Sci. Eng. A 456, 52 (2007)

    Article  Google Scholar 

  12. B.M. Morrow, R.J. Mccabe, E.K. Cerreta, C.N. Tomé, Metall. Mater. Trans. A 45, 36 (2014)

    Article  CAS  Google Scholar 

  13. ​S.M. Fatemi-Varzaneh, A. Zarei-Hanzaki, J.M. Cabrera, P.R. Calvillo, Mater. Chem. Phys. 149-150, 339 (2015)

    Article  Google Scholar 

  14. B.-Y. Liu, F, Liu, N, Yang, X,-B, Zhai, L, Zhang, Y, Yang, B. Li, J. Li, E. Ma, J.-F. Nie, Z.-W. Shan, Science 365, 73 (2019)

    Article  CAS  Google Scholar 

  15. X.P. Chen, L.X. Wang, R. Xiao, X.Y. Zhong, G.J. Huang, Q. Liu, J. Alloy. Compd. 604, 112 (2014)

    Article  CAS  Google Scholar 

  16. ​Y.J. Chen, Q.D. Wang, H.J. Roven, M.P. Liu, M. Karlsen, Y.D. Yu, J. Hjelen, Scripta Mater. 58, 311 (2008)

    Article  CAS  Google Scholar 

  17. ​S.-H. Kim, J.H. Lee, C.S. Lee, J. Yoon, S.H. Park, J. Mater. Sci. Technol. 35, 473 (2019)

    Article  CAS  Google Scholar 

  18. J. Stráská, M. Janeček, J. Gubicza, T. Krajňák, E.Y. Yoon, H.S. Kim, Mater. Sci. Eng. A 625, 98 (2015)

    Google Scholar 

  19. X.Y. Liu, L.W. Lu, K. Sheng, T. Zhou, Acta Metall. Sin. Engl. 32, 710 (2019)

    Google Scholar 

  20. F. Li, Y. Liu, X.B. Li, Front. Mater. Sci. 11, 296 (2017)

    Article  Google Scholar 

  21. F. Li, Y. Liu, X. Li, Acta Metall. Sin. Engl. 30, 1135 (2017)

    Article  CAS  Google Scholar 

  22. L. Lu, X. Liu, D. Shi, M. Ma, Z, Wang, JOM 71, 1566 (2019)

    Article  CAS  Google Scholar 

  23. P.B. Berbon, M. Furukawa, Z. Horita, Z. Horita, M. Nemoto, T.G. Langdon, Metall. Mater. Trans. A 30, 1989 (1999)

    Article  CAS  Google Scholar 

  24. H. Chen, B. Song, N. Guo, T. Liu, T. Zhou, J. He, Met. Mater. Int. 25, 147 (2019)

    Google Scholar 

  25. X. Zhang, Y. Cheng, J. Alloy. Compd. 622, 1105 (2015)

    Article  CAS  Google Scholar 

  26. Y.P. Wang, F. Li, X.W. Li, Int. J. Adv. Manuf. Tech. 108, 289 (2020)

    Article  Google Scholar 

  27. K.D. Molodov, T. Al-Samman, D.A. Molodov, D.A. Molodov, G. Gottstein, Acta Mater. 76, 314 (2014)

    Article  CAS  Google Scholar 

  28. H. Chen, T. Liu, H. Yu, B. Song, D. Hou N. Guo, J. He, Adv. Eng. Mater. 18, 1683 (2016)

    Article  CAS  Google Scholar 

  29. X. Zhao, S. Li, F. Yan, Z. Zhang, Y. Wu, Materials 12, 4223 (2019)

    Article  CAS  Google Scholar 

  30. S.M. Fatemi-Varzaneh, A. Zarei-Hanzaki, H. Beladi, Mater. Sci. Eng. A 456, 52 (2015)

    Article  Google Scholar 

  31. A.G. Beer, M.R. Barnett, Metall. Mater. Trans. A 38, 1856 (2007)

    Article  Google Scholar 

  32. P. Vostrý, I. Stulíková, J. Kiehn, M. Šamatová, K.U. Kainer, F.M. Knoop, Mater. Sci. Forum 210-213, 635 (1996)

    Article  Google Scholar 

  33. Y. Chino, K. Kimura, M. Mabuchi, Mater. Sci. Eng. A 486, 481 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This project is supported by National Natural Science Foundation of China (Grant No. 51975166) and the Fundamental Research Foundation for Universities of Heilongjiang Province (No. LGYC2018JQ011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Li or Qiang Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Li, F., Wang, Y. et al. Role of Grain Refinement Mechanism on Microstructure and Performance in AZ31B Alloy During Interactive Alternating Forward Extrusion (AFE) Process. Met. Mater. Int. 28, 823–832 (2022). https://doi.org/10.1007/s12540-020-00962-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00962-9

Keywords

Navigation